问题描述
我正在使用 spark-excel 来读取Excel文件,问题出在我什么时候如果使用具有多行标头的文件,则数据集的QueryExecution会引发异常 Method引发了'scala.MatchError'异常.无法评估org.apache.spark.sql.execution.QueryExecution.toString()
I'm using spark-excel to read excel files, the problem is whenever I use a file with multilines header, the QueryExecution of the dataset throw an exception Method threw 'scala.MatchError' exception. Cannot evaluate org.apache.spark.sql.execution.QueryExecution.toString()
目前唯一的解决方案是用一行替换多行标题,我也尝试使用 withColumnRenamed
替换数据集中的列名,但是没有用,有没有解决这个问题的方法?
The only solution for now is to replace the multiline header with a one line, I also tried to replace the column name in the dataset using withColumnRenamed
, but it didn't work, is there any way to fix this?
这是完整的堆栈:
scala.MatchError: Nom de l'entité <-- Name of the header.
Name of the entity <-- Name of the header.
(of class java.lang.String)
at com.crealytics.spark.excel.ExcelRelation$$anonfun$2.apply(ExcelRelation.scala:122)
at com.crealytics.spark.excel.ExcelRelation$$anonfun$2.apply(ExcelRelation.scala:120)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at com.crealytics.spark.excel.ExcelRelation.buildScan(ExcelRelation.scala:120)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$11.apply(DataSourceStrategy.scala:300)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$11.apply(DataSourceStrategy.scala:300)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:338)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:337)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy.pruneFilterProjectRaw(DataSourceStrategy.scala:393)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy.pruneFilterProject(DataSourceStrategy.scala:333)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy.apply(DataSourceStrategy.scala:296)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:63)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:63)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:78)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:75)
at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:75)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:67)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:72)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:68)
at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:77)
at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3248)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2484)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2698)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
at org.apache.spark.sql.Dataset.show(Dataset.scala:723)
at org.apache.spark.sql.Dataset.show(Dataset.scala:682)
at org.apache.spark.sql.Dataset.show(Dataset.scala:691)
at Main.main(Main.java:33)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.microsoft.azure.hdinsight.spark.mock.SparkLocalRunner.runJobMain(SparkLocalRunner.java:75)
at com.microsoft.azure.hdinsight.spark.mock.SparkLocalRunner.main(SparkLocalRunner.java:48)
更新
复制步骤:
SparkSession session = SparkSession.builder().getOrCreate();
String path = "testMultiLineHeader.xlsx";
Dataset<Row> dsBal = session.read().format("com.crealytics.spark.excel")
.option("location", path)
.option("sheetName", "Feuil1")
.option("useHeader", "true")
.option("treatEmptyValuesAsNulls", "true")
.option("inferSchema", "true")
.option("addColorColumns", "false")
.load(path);
dsBal.show();
导致此错误的文件:文件
推荐答案
此问题已通过 spark excel 0.9.17
解决,发布链接在 github
This issue is fixed with spark excel 0.9.17
, issue link in github
这篇关于Spark Excel:使用多行标头读取Excel文件会引发异常:方法抛出"scala.MatchError"异常的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!