问题描述
(请参阅下面的工作解决方案)
(see working solution below)
我想使用multidplyr来并行化一个函数:
I want to use multidplyr to parallelize a function :
calculs.R
f <- function(x){
return(x+1)
}
main.R
library(dplyr)
library(multidplyr)
source("calculs.R")
d <- data.frame(a=1:1000,b=sample(1:2,1000),replace=T)
result <- d %>%
partition(b) %>%
do(f(.)) %>%
collect()
然后我得到:
Initialising 3 core cluster.
Error in checkForRemoteErrors(lapply(cl, recvResult)) :
2 nodes produced errors; first error: could not find function "f"
In addition: Warning message:
group_indices_.grouped_df ignores extra arguments
如何为每个内核分配源函数?
How can I assign sourced functions to each core?
=================
==================
这是完美的脚本:
必须提取要更新的值,然后将结果转换为数据框
Must extract the value to update, and turn the result into a dataframe
calcul.R
f <- function(x){
return(data.frame(x$a+1))
}
必须设置集群并分配源函数
Must set the clusters and assign the sourced functions
main.R
library(dplyr)
library(multidplyr)
source("calculs.R")
cl <- create_cluster(3)
set_default_cluster(cl)
cluster_copy(cl, f)
d <- data.frame(a=1:10,b=c(rep(1,5),rep(2,5)))
result <- d %>%
partition(b) %>%
do(f(.)) %>%
collect()
推荐答案
您似乎初始化了集群(尽管未显示此部分).您需要将变量/函数从全局环境导出到每个工作人员.假设您将群集设置为
It looks like you initialized a cluster (though you don't show this part). You need to export variables/function from your global environment to each worker. Assuming you made your cluster as
cl <- create_cluster(3)
set_default_cluster(cl)
你能尝试
cluster_copy(cl, f)
这会将 f
复制并导出到每个工作人员(我认为...)
This will copy-and-export f
to each worker (I think...)
额外
您可能会遇到另一个问题,那就是您的函数接受 x
作为参数,并向其添加1
You'll likely run into another problem which is that your function accepts x
as an argument, to which you add 1
f <- function(x){
return(x+1)
}
由于您要向 f
传递数据帧,因此您需要的是 data.frame + 1
,这没有任何意义.您可能需要将功能更改为类似的
Since you're passing a data frame to f
, you are asking for data.frame+1
, which doesn't make sense. You might want to change your function to something like
f <- function(x){
return(x$a+1)
}
这篇关于multidplyr:将功能分配给集群的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!