本文介绍了如何将带有keras回归器的scikit-learn管线保存到磁盘上?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个带有kerasRegressor的scikit学习管道:
I have a scikit-learn pipline with kerasRegressor in it:
estimators = [
('standardize', StandardScaler()),
('mlp', KerasRegressor(build_fn=baseline_model, nb_epoch=5, batch_size=1000, verbose=1))
]
pipeline = Pipeline(estimators)
在训练了基础知识之后,我正尝试使用joblib将其保存到磁盘...
After, training the pipline, I am trying to save to disk using joblib...
joblib.dump(pipeline, filename , compress=9)
但是我遇到一个错误:
您如何将管道保存到磁盘?
How would you save the pipeline to disk?
推荐答案
我遇到了同样的问题,因为没有直接的方法可以做到这一点.这是一个对我有用的技巧.我将管道保存到两个文件中.第一个文件存储了sklearn管道的腌制对象,第二个文件用于存储Keras模型:
I struggled with the same problem as there are no direct ways to do this. Here is a hack which worked for me. I saved my pipeline into two files. The first file stored a pickled object of the sklearn pipeline and the second one was used to store the Keras model:
...
from keras.models import load_model
from sklearn.externals import joblib
...
pipeline = Pipeline([
('scaler', StandardScaler()),
('estimator', KerasRegressor(build_model))
])
pipeline.fit(X_train, y_train)
# Save the Keras model first:
pipeline.named_steps['estimator'].model.save('keras_model.h5')
# This hack allows us to save the sklearn pipeline:
pipeline.named_steps['estimator'].model = None
# Finally, save the pipeline:
joblib.dump(pipeline, 'sklearn_pipeline.pkl')
del pipeline
这是如何加载模型的方法:
And here is how the model could be loaded back:
# Load the pipeline first:
pipeline = joblib.load('sklearn_pipeline.pkl')
# Then, load the Keras model:
pipeline.named_steps['estimator'].model = load_model('keras_model.h5')
y_pred = pipeline.predict(X_test)
这篇关于如何将带有keras回归器的scikit-learn管线保存到磁盘上?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!