本文介绍了为什么MonadFix的实例不能用于连续monad?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我们如何证明没有?
How can we prove that the continuation monad has no valid instance of MonadFix
?
推荐答案
不是不能有一个 MonadFix
实例,只是库的类型有点过于拘束。如果您在所有可能的 r
s中定义 ContT
,则不仅 MonadFix
成为可能,但是所有高达 Monad
的实例都不需要底层仿函数:
Well actually, it's not that there can't be a MonadFix
instance, just that the library's type is a bit too constrained. If you define ContT
over all possible r
s, then not only does MonadFix
become possible, but all instances up to Monad
require nothing of the underlying functor :
newtype ContT m a = ContT { runContT :: forall r. (a -> m r) -> m r }
instance Functor (ContT m) where
fmap f (ContT k) = ContT (\kb -> k (kb . f))
instance Monad (ContT m) where
return a = ContT ($a)
join (ContT kk) = ContT (\ka -> kk (\(ContT k) -> k ka))
instance MonadFix m => MonadFix (ContT m) where
mfix f = ContT (\ka -> mfixing (\a -> runContT (f a) ka<&>(,a)))
where mfixing f = fst <$> mfix (\ ~(_,a) -> f a )
这篇关于为什么MonadFix的实例不能用于连续monad?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!