问题描述
我试图了解numpy掩码数组和带有nans的普通数组之间的大小差异是多少.
I am trying to understand what's the size difference between a numpy masked array and a normal array with nans.
import numpy as np
g = np.random.random((5000,5000))
indx = np.random.randint(0,4999,(500,2))
mask = np.full((5000,5000),False,dtype=bool)
mask[indx] = True
g_mask = np.ma.array(g,mask=mask)
我使用以下 answer 来计算对象的大小:
I used the following answer to compute the size of the object:
import sys
from types import ModuleType, FunctionType
from gc import get_referents
# Custom objects know their class.
# Function objects seem to know way too much, including modules.
# Exclude modules as well.
BLACKLIST = type, ModuleType, FunctionType
def getsize(obj):
"""sum size of object & members."""
if isinstance(obj, BLACKLIST):
raise TypeError('getsize() does not take argument of type: '+ str(type(obj)))
seen_ids = set()
size = 0
objects = [obj]
while objects:
need_referents = []
for obj in objects:
if not isinstance(obj, BLACKLIST) and id(obj) not in seen_ids:
seen_ids.add(id(obj))
size += sys.getsizeof(obj)
need_referents.append(obj)
objects = get_referents(*need_referents)
return size
这给了我以下结果:
getsize(g)
>>>200000112
getsize(g_mask)
>>>25000924
为什么未遮罩的数组比遮罩的数组大?如何估算屏蔽数组与未屏蔽数组的实际大小?
Why the unmasked array is bigger compared to the masked array? How can I estimate the real size of the masked array vs the unmasked array?
推荐答案
In [23]: g = np.random.random((5000,5000))
...: indx = np.random.randint(0,4999,(500,2))
...: mask = np.full((5000,5000),False,dtype=bool)
...: mask[indx] = True
...: g_mask = np.ma.array(g,mask=mask)
将g
数组与g_mask
的_data
属性进行比较,我们看到后者只是前者的view
:
Comparing the g
array with the _data
attribute of g_mask
, we see that the latter is just a view
of the former:
In [24]: g.__array_interface__
Out[24]:
{'data': (139821997776912, False),
'strides': None,
'descr': [('', '<f8')],
'typestr': '<f8',
'shape': (5000, 5000),
'version': 3}
In [25]: g_mask._data.__array_interface__
Out[25]:
{'data': (139821997776912, False),
'strides': None,
'descr': [('', '<f8')],
'typestr': '<f8',
'shape': (5000, 5000),
'version': 3}
它们具有相同的数据缓冲区,但它们的id
不同:
They have the same data buffer, but their id
is different:
In [26]: id(g)
Out[26]: 139822758212672
In [27]: id(g_mask._data)
Out[27]: 139822386925440
与面具相同:
In [28]: mask.__array_interface__
Out[28]:
{'data': (139822298669072, False),
'strides': None,
'descr': [('', '|b1')],
'typestr': '|b1',
'shape': (5000, 5000),
'version': 3}
In [29]: g_mask._mask.__array_interface__
Out[29]:
{'data': (139822298669072, False),
'strides': None,
'descr': [('', '|b1')],
'typestr': '|b1',
'shape': (5000, 5000),
'version': 3}
实际上,这种结构的_mask
是相同的数组:
Actually with this construction, the _mask
is the same array:
In [30]: id(mask)
Out[30]: 139822385963056
In [31]: id(g_mask._mask)
Out[31]: 139822385963056
掩码数组的
__array_interface__
是._data
属性的
__array_interface__
of the masked array is that of the ._data
attribute:
In [32]: g_mask.__array_interface__
Out[32]:
{'data': (139821997776912, False),
nbytes
是数组的数据缓冲区的大小:
nbytes
is the size of the data buffer for an array:
In [34]: g_mask.data.nbytes
Out[34]: 200000000
In [35]: g_mask.mask.nbytes
Out[35]: 25000000
一个布尔数组每个元素有1个字节,而float64有8个字节.
A boolean array has 1 byte per element, and a float64, 8 bytes.
这篇关于为什么与非掩码数组相比,掩码数组似乎更小?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!