本文介绍了Python 数组旋转的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

所以我在 python 中实现了块交换算法.

我遵循的算法是这样的:

初始化 A = arr[0..d-1] 和 B = arr[d..n-1]1) 执行以下操作,直到 A 的大小等于 B 的大小

a) 如果 A 较短,则将 B 分成 Bl 和 Br,使得 Br 相同长度为 A.交换 A 和 Br 以将 ABlBr 更改为 BrBlA.现在A是在它的最后位置,所以在 B 块上重复.

b) 如果 A 更长,则将 A 分成 Al 和 Ar,使得 Al 相同长度为 B 交换 Al 和 B 以将 AlArB 变为 BArAl.现在 B是在它的最后位置,所以在 A 的片段上重复.

2) 最后当 A 和 B 大小相等时,块交换它们.

同样的算法已经在这个网站上用 C 实现了 - Array旋转

我的python代码是

a = [1,2,3,4,5,6,7,8]x = 2n = len(a)定义旋转(a,x):n = len(a)如果 x == 0 或 x == n:返回一个如果 x == n -x:打印(一)对于范围(x)中的我:a[i], a[(i-x+n) % n] = a[(i-x+n) % n], a[i]打印(一)返回一个如果 x 

我在每个阶段都得到了正确的值,但递归函数调用没有返回预期的结果,我似乎无法理解原因.有人可以解释我的递归有什么问题吗?以及可能的替代方案是什么.

解决方案

您可以在 Python 中使用 deque:

>>>从集合导入双端队列>>>d=deque([1,2,3,4,5])>>>d双端队列([1, 2, 3, 4, 5])>>>d.旋转(2)>>>d双端队列([4, 5, 1, 2, 3])>>>d.旋转(-2)>>>d双端队列([1, 2, 3, 4, 5])

或者使用列表切片:

>>>li=[1,2,3,4,5]>>>li[2:]+li[:2][3, 4, 5, 1, 2]>>>li[-2:]+li[:-2][4, 5, 1, 2, 3]

请注意,符号约定与 deque.rotate 与切片相反.

如果你想要一个具有相同符号约定的函数:

def 旋转(l,y=1):如果 len(l) == 0:返回 ly = -y % len(l) # 翻转旋转方向返回 l[y:] + l[:y]>>>旋转([1,2,3,4,5],2)[4, 5, 1, 2, 3]>>>旋转([1,2,3,4,5],-22)[3, 4, 5, 1, 2]>>>旋转('abcdefg',3)'efgabcd'

对于 numpy,只需使用 np.roll

>>>一种数组([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>>np.roll(a, 1)数组([9, 0, 1, 2, 3, 4, 5, 6, 7, 8])>>>np.roll(a, -1)数组([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])

或者您可以使用上述 rotate 的 numpy 版本(再次注意符号与 np.roll 的区别):

defrotate(a,n=1):如果 len(a) == 0:返回一个n = -n % len(a) # 翻转旋转方向返回 np.concatenate((a[n:],a[:n]))

So I am implementing a block swap algorithm in python.

The algorithm I am following is this:

Initialize A = arr[0..d-1] and B = arr[d..n-1]1) Do following until size of A is equal to size of B

a) If A is shorter, divide B into Bl and Br such that Br is of same length as A. Swap A and Br to change ABlBr into BrBlA. Now A is at its final place, so recur on pieces of B.

b) If A is longer, divide A into Al and Ar such that Al is of same length as B Swap Al and B to change AlArB into BArAl. Now B is at its final place, so recur on pieces of A.

2) Finally when A and B are of equal size, block swap them.

The same algorithm has been implemented in C on this website - Array Rotation

My python code for the same is

a = [1,2,3,4,5,6,7,8]

x = 2

n = len(a)


def rotate(a,x):
    n = len(a)

    if x == 0 or x == n:
        return a

    if x == n -x:
        print(a)
        for i in range(x):
            a[i], a[(i-x+n) % n] = a[(i-x+n) % n], a[i]
        print(a)
        return a

    if x < n-x:
        print(a)
        for i in range(x):
            a[i], a[(i-x+n) % n] = a[(i-x+n) % n], a[i]
        print(a)
        rotate(a[:n-x],x)
    else:
        print(a)
        for i in range(n-x):
            a[i], a[(i-(n-x) + n) % n] = a[(i-(n-x) + n) % n] , a[i]
        print(a)
        rotate(a[n-x:], n-x)

rotate(a,x)
print(a)

I am getting the right values at each stage but the recursive function call is not returning the expected result and I cannot seem to understand the cause. Can someone explain whats wrong with my recursion ? and what can be the possible alternative.

解决方案

You can rotate a list in place in Python by using a deque:

>>> from collections import deque
>>> d=deque([1,2,3,4,5])
>>> d
deque([1, 2, 3, 4, 5])
>>> d.rotate(2)
>>> d
deque([4, 5, 1, 2, 3])
>>> d.rotate(-2)
>>> d
deque([1, 2, 3, 4, 5])

Or with list slices:

>>> li=[1,2,3,4,5]
>>> li[2:]+li[:2]
[3, 4, 5, 1, 2]
>>> li[-2:]+li[:-2]
[4, 5, 1, 2, 3]

Note that the sign convention is opposite with deque.rotate vs slices.

If you want a function that has the same sign convention:

def rotate(l, y=1):
   if len(l) == 0:
      return l
   y = -y % len(l)     # flip rotation direction
   return l[y:] + l[:y]

>>> rotate([1,2,3,4,5],2)
[4, 5, 1, 2, 3]
>>> rotate([1,2,3,4,5],-22)
[3, 4, 5, 1, 2]
>>> rotate('abcdefg',3)
'efgabcd'


For numpy, just use np.roll

>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.roll(a, 1)
array([9, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.roll(a, -1)
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])

Or you can use a numpy version of the same rotate above (again noting the difference in sign vs np.roll):

def rotate(a,n=1):
    if len(a) == 0:
        return a
    n = -n % len(a)     # flip rotation direction
    return np.concatenate((a[n:],a[:n]))

这篇关于Python 数组旋转的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-31 06:18