问题描述
我正在编写一个使用Linux异步I/O系统调用的库,并且想知道为什么io_submit
函数在ext4文件系统上扩展性差.如果可能的话,对于大的IO请求大小,我该怎么做才能使io_submit
不阻塞?我已经执行了以下操作(如此处所述):
I am writing a library that uses the Linux asynchronous I/O system calls, and would like to know why the io_submit
function is exhibiting poor scaling on the ext4 file system. If possible, what can I do to get io_submit
not to block for large IO request sizes? I already do the following (as described here):
- 使用
O_DIRECT
. - 将IO缓冲区对准512字节边界.
- 将缓冲区大小设置为页面大小的倍数.
为了观察内核在io_submit
中花费了多长时间,我运行了一个测试,在其中使用dd
和/dev/urandom
创建了一个1 Gb测试文件,并反复删除了系统缓存(sync; echo 1 > /proc/sys/vm/drop_caches
)并读取文件中越来越大的部分.在每次迭代中,我都打印了io_submit
所花费的时间以及等待读取请求完成所花费的时间.我在运行Arch Linux(内核版本3.11)的x86-64系统上进行了以下实验.该机器具有一个SSD和一个Core i7 CPU.第一张图绘制了读取的页面数与等待io_submit
完成所花费的时间.第二张图显示等待读取请求完成所花费的时间.时间以秒为单位.
In order to observe how long the kernel spends in io_submit
, I ran a test in which I created a 1 Gb test file using dd
and /dev/urandom
, and repeatedly dropped the system cache (sync; echo 1 > /proc/sys/vm/drop_caches
) and read increasingly larger portions of the file. At each iteration, I printed the time taken by io_submit
and the time spent waiting for the read request to finish. I ran the following experiment on an x86-64 system running Arch Linux, with kernel version 3.11. The machine has an SSD and a Core i7 CPU. The first graph plots the number of pages read against the time spent waiting for io_submit
to finish. The second graph displays the time spent waiting for the read request to finish. The times are measured in seconds.
为了进行比较,我创建了一个类似的测试,该测试通过pread
使用同步IO.结果如下:
For comparison, I created a similar test that uses synchronous IO by means of pread
. Here are the results:
似乎异步IO可以按预期工作,直到大约20,000页的请求大小.之后,io_submit
会阻塞.这些观察结果导致以下问题:
It seems that the asynchronous IO works as expected up to request sizes of around 20,000 pages. After that, io_submit
blocks. These observations lead to the following questions:
- 为什么
io_submit
的执行时间不是恒定的? - 是什么原因导致这种不良的缩放行为?
- 我是否需要将ext4文件系统上的所有读取请求拆分为多个请求,每个请求的大小均小于20,000页?
- 这个20,000的魔术"价值从何而来?如果我在另一个Linux系统上运行程序,如何确定要使用的最大IO请求大小,而不会出现不良的扩展行为?
- Why isn't the execution time of
io_submit
constant? - What is causing this poor scaling behavior?
- Do I need to split up all read requests on ext4 file systems into multiple requests, each of size less than 20,000 pages?
- Where does this "magic" value of 20,000 come from? If I run my program on another Linux system, how can I determine the largest IO request size to use without experiencing poor scaling behavior?
下面是用于测试异步IO的代码.如果您认为其他相关的资源清单,我可以添加它们,但我尝试仅发布我认为可能相关的详细信息.
The code used to test the asynchronous IO follows below. I can add other source listings if you think they are relevant, but I tried to post only the details that I thought might be relevant.
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <chrono>
#include <iostream>
#include <memory>
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
// For `__NR_*` system call definitions.
#include <sys/syscall.h>
#include <linux/aio_abi.h>
static int
io_setup(unsigned n, aio_context_t* c)
{
return syscall(__NR_io_setup, n, c);
}
static int
io_destroy(aio_context_t c)
{
return syscall(__NR_io_destroy, c);
}
static int
io_submit(aio_context_t c, long n, iocb** b)
{
return syscall(__NR_io_submit, c, n, b);
}
static int
io_getevents(aio_context_t c, long min, long max, io_event* e, timespec* t)
{
return syscall(__NR_io_getevents, c, min, max, e, t);
}
int main(int argc, char** argv)
{
using namespace std::chrono;
const auto n = 4096 * size_t(std::atoi(argv[1]));
// Initialize the file descriptor. If O_DIRECT is not used, the kernel
// will block on `io_submit` until the job finishes, because non-direct
// IO via the `aio` interface is not implemented (to my knowledge).
auto fd = ::open("dat/test.dat", O_RDONLY | O_DIRECT | O_NOATIME);
if (fd < 0) {
::perror("Error opening file");
return EXIT_FAILURE;
}
char* p;
auto r = ::posix_memalign((void**)&p, 512, n);
if (r != 0) {
std::cerr << "posix_memalign failed." << std::endl;
return EXIT_FAILURE;
}
auto del = [](char* p) { std::free(p); };
std::unique_ptr<char[], decltype(del)> buf{p, del};
// Initialize the IO context.
aio_context_t c{0};
r = io_setup(4, &c);
if (r < 0) {
::perror("Error invoking io_setup");
return EXIT_FAILURE;
}
// Setup I/O control block.
iocb b;
std::memset(&b, 0, sizeof(b));
b.aio_fildes = fd;
b.aio_lio_opcode = IOCB_CMD_PREAD;
// Command-specific options for `pread`.
b.aio_buf = (uint64_t)buf.get();
b.aio_offset = 0;
b.aio_nbytes = n;
iocb* bs[1] = {&b};
auto t1 = high_resolution_clock::now();
auto r = io_submit(c, 1, bs);
if (r != 1) {
if (r == -1) {
::perror("Error invoking io_submit");
}
else {
std::cerr << "Could not submit request." << std::endl;
}
return EXIT_FAILURE;
}
auto t2 = high_resolution_clock::now();
auto count = duration_cast<duration<double>>(t2 - t1).count();
// Print the wait time.
std::cout << count << " ";
io_event e[1];
t1 = high_resolution_clock::now();
r = io_getevents(c, 1, 1, e, NULL);
t2 = high_resolution_clock::now();
count = duration_cast<duration<double>>(t2 - t1).count();
// Print the read time.
std::cout << count << std::endl;
r = io_destroy(c);
if (r < 0) {
::perror("Error invoking io_destroy");
return EXIT_FAILURE;
}
}
推荐答案
我的理解是,Linux上很少有(如果有的话)文件系统完全支持AIO.某些文件系统操作仍然会阻塞,有时io_submit()
会间接通过文件系统操作来调用此类阻塞调用.
My understanding is that very few (if any) filesystems on linux fully supports AIO. Some filesystem operations still block, and sometimes io_submit()
will, indirectly via filesystem operations, invoke such blocking calls.
我的理解是,内核AIO的主要用户主要关心的是AIO在原始块设备(即无文件系统)上确实是异步的.本质上是数据库供应商.
My understanding is further that the main users of kernel AIO primarily care about AIO being truly asynchronous on raw block devices (i.e. no filesystem). essentially database vendors.
此处来自linux-aio的相关文章邮件列表. (线程的头部)
Here's a relevant post from the linux-aio mailing list. (head of the thread)
一个可能有用的建议:
这篇关于Linux AIO:可伸缩性差的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!