本文介绍了还原MinMax缩放的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个值数组(百分比),范围从0到100:

I have an array of value (percentages) scaled from 0 to 100:

[34,  34,  84,  28,  56,  56,   0,   0, 100]

我知道这些值已使用MinMax定标器进行定标:

I know that these values have been scaled with a MinMax scaler:

V = (actual - min) / (max - min)

然后乘以100即可得到上述百分比.我没有执行此转换,所以没有实际的,最小的或最大的值.但是我有V.

And then multiplied by 100 to have the percentages above. I didn't perform this transformation so I don't have actual, min, or max. But I have V.

我想使用numpy.linalg.solve,但是我显然不能将V表示为实际,最小,最大的线性/独立组合.

I wanted to use numpy.linalg.solve, but I obviously can't express V as a linear/independent combination of actual, min, max.

这是一个已知问题吗?

推荐答案

您无法获取实际数字.请考虑以下列表:

There is no way you can obtain the actual numbers back. Consider the following lists:

actuals1 = [34,  34,  84,  28,  56,  56,   0,   0, 100]
actuals2 = [3.4,  3.4,  8.4,  2.8,  5.6,  5.6,   0,   0, 10]
actuals3 = [340,  340,  840,  280,  560,  560,   0,   0, 1000]
actuals4 = [17,  17,  42,  14,  28,  28   0,   0, 50]

如果执行MinMax缩放,则所有这些都将获得相同的结果,因此没有唯一的结果.那是因为您由于系统不确定而获得了参数解(如Reda Drissi的评论中所述),因此任何乘以一个解都是有效的解.

If you perform your MinMax scaling, you obtain same result with all of them so there is no unique result. That is because you obtain a parametric solution due to your undetermined system (as mentioned in Reda Drissi's comment), so any multiply of a solution is a valid solution.

这篇关于还原MinMax缩放的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-31 01:50