问题描述
我有一个值数组(百分比),范围从0到100:
I have an array of value (percentages) scaled from 0 to 100:
[34, 34, 84, 28, 56, 56, 0, 0, 100]
我知道这些值已使用MinMax定标器进行定标:
I know that these values have been scaled with a MinMax scaler:
V = (actual - min) / (max - min)
然后乘以100即可得到上述百分比.我没有执行此转换,所以没有实际的,最小的或最大的值.但是我有V.
And then multiplied by 100 to have the percentages above. I didn't perform this transformation so I don't have actual, min, or max. But I have V.
我想使用numpy.linalg.solve
,但是我显然不能将V表示为实际,最小,最大的线性/独立组合.
I wanted to use numpy.linalg.solve
, but I obviously can't express V as a linear/independent combination of actual, min, max.
这是一个已知问题吗?
推荐答案
您无法获取实际数字.请考虑以下列表:
There is no way you can obtain the actual numbers back. Consider the following lists:
actuals1 = [34, 34, 84, 28, 56, 56, 0, 0, 100]
actuals2 = [3.4, 3.4, 8.4, 2.8, 5.6, 5.6, 0, 0, 10]
actuals3 = [340, 340, 840, 280, 560, 560, 0, 0, 1000]
actuals4 = [17, 17, 42, 14, 28, 28 0, 0, 50]
如果执行MinMax缩放,则所有这些都将获得相同的结果,因此没有唯一的结果.那是因为您由于系统不确定而获得了参数解(如Reda Drissi的评论中所述),因此任何乘以一个解都是有效的解.
If you perform your MinMax scaling, you obtain same result with all of them so there is no unique result. That is because you obtain a parametric solution due to your undetermined system (as mentioned in Reda Drissi's comment), so any multiply of a solution is a valid solution.
这篇关于还原MinMax缩放的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!