本文介绍了Matlab图像旋转的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我是图像处理的新手,我已经实现了图像变形的代码,它完美无缺。我想通过使用线性插值来旋转图像而不使用内置函数(interp)来改进代码。这是我的代码: 全部关闭; 清除所有; img ='woods.jpg'; input_image = double(imread(img))./ 255; H = size(input_image,1); W = size(input_image,2); th = pi / 4; s0 = 2; s1 = 2; x0 = -W / 2; x1 = -H / 2; T = [1 0 x0; ... 0 1 x1; ...... 0 0 1]; RST = [(s0 * cos(th))( - s1 * sin(th))((s0 * x0 * cos(th)) - (s1 * x1 * sin(th)) ); ... (s0 * sin(th))(s1 * cos(th))((s0 * x0 * sin(th))+(s1 * x1 * cos(th))); ...... 0 0 1]; M = inv(T)* R; N = inv(M); output_image =零(H,W,3); i = 1的 :j = 1的W :H x = [i; j; 1]; y = N * x; a = y(1)/ y(3); b = y(2)/ y(3); a = round(a); b = round(b); if(a> 0& a< = W&& b> 0&& b< = H) output_image(j,i,:)= input_image(b,A,:); 结束 结束结束 imgshow(output_image); 解决方案检查以下解决方案: 我通过比较函数中的Matalb构建验证了实现 [imwarp] [1] 。 全部关闭; 清除所有; img ='peppers.png'; input_image = double(imread(img))./ 255; H = size(input_image,1); %height W = size(input_image,2); %width th = pi / 4; s0 = 2; s1 = 2; x0 = -W / 2; x1 = -H / 2; T = [1 0 x0; ... 0 1 x1; ...... 0 0 1]; RST = [(s0 * cos(th))( - s1 * sin(th))((s0 * x0 * cos(th)) - (s1 * x1 * sin(th)) ); ... (s0 * sin(th))(s1 * cos(th))((s0 * x0 * sin(th))+(s1 * x1 * cos(th))); ...... 0 0 1]; M = inv(T)* RST; N = inv(M); output_image =零(H,W,3); i = 1的 :j = 1的W :H x = [i; j; 1]; y = N * x; a = y(1)/ y(3); b = y(2)/ y(3); %最近邻居%a = round(a); %b = round(b); x1 = floor(a); y1 = floor(b); x2 = x1 + 1; y2 = y1 + 1; %双线性插值ilsutration:%图像坐标样式(水平索引优先)%%(x1,y1)| (x2,y1)%| 1-dy %1-dx | dx %------(a,b)------------ %| %| %| %| dy %| %| %(x1,y2)| (x2,y2) if((x1> = 1)&&(y1> = 1)&&(x2< = W)&&(y2 < = H))%加载2x2像素 i11 = input_image(y1,x1,:); %左上角像素 i21 = input_image(y2,x1,:); %左下角像素 i12 = input_image(y1,x2,:); %右上角像素 i22 = input_image(y2,x2,:); %右下角像素 %插值wieghts dx = x2 - a; dy = y2 - b; %Bi-lienar interpolation output_image(j,i,:) = i11 * dx * dy + i21 * dx *(1-dy)+ i12 *(1-dx)* dy + i22 *(1-dx)*(1-dy); 结束结束结束 imshow(output_image); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b $ b tform = affine2d(M'); ref_image = imwarp(input_image,tform,'OutputView',imref2d(size(input_image)),'Interp','linear'); figure; imshow(ref_image) figure; imshow(output_image - ref_image) max_diff = max(abs(output_image(:) - ref_image(:))); disp(['最大差异来自imwarp =',num2str(max_diff)]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 结果: 备注: 我错过了以下使用双线性插值调整图像大小的execelnt帖子(更好地解释了双线性插值): 使用双线性插值调整图像大小而不会影响 I am new to image processing, I have implemented a code for image warping and it works perfectly. I would like to improve the code by using linear interpolation to rotate the image WITHOUT using the built-in function (interp). Here is my code:close all;clear all;img = 'woods.jpg';input_image =double(imread(img))./255;H=size(input_image,1);W=size(input_image,2);th=pi/4;s0 = 2;s1 = 2;x0 = -W/2;x1 = -H/2;T=[1 0 x0 ; ... 0 1 x1 ; ... 0 0 1];RST = [ (s0*cos(th)) (-s1*sin(th)) ((s0*x0*cos(th))-(s1*x1*sin(th))); ... (s0*sin(th)) (s1*cos(th)) ((s0*x0*sin(th))+(s1*x1*cos(th))); ... 0 0 1];M=inv(T)*R;N = inv(M);output_image=zeros(H,W,3);for i=1:W for j=1:H x = [i ; j ; 1]; y = N * x; a = y(1)/y(3); b = y(2)/y(3); a = round(a); b = round(b); if (a>0 && a<=W && b>0 && b<=H) output_image(j,i,:)=input_image(b,a,:); end endendimgshow(output_image); 解决方案 Check the following solution:I verified implementation by comparing to Matalb build in function [imwarp][1].close all;clear all;img = 'peppers.png';input_image =double(imread(img))./255;H=size(input_image,1); % heightW=size(input_image,2); % widthth=pi/4;s0 = 2;s1 = 2;x0 = -W/2;x1 = -H/2;T=[1 0 x0 ; ... 0 1 x1 ; ... 0 0 1];RST = [ (s0*cos(th)) (-s1*sin(th)) ((s0*x0*cos(th))-(s1*x1*sin(th))); ... (s0*sin(th)) (s1*cos(th)) ((s0*x0*sin(th))+(s1*x1*cos(th))); ... 0 0 1];M=inv(T)*RST;N = inv(M);output_image=zeros(H,W,3);for i=1:W for j=1:H x = [i ; j ; 1]; y = N * x; a = y(1)/y(3); b = y(2)/y(3); %Nearest neighbor %a = round(a); %b = round(b); x1 = floor(a); y1 = floor(b); x2 = x1 + 1; y2 = y1 + 1; %Bi-linear interpolation ilsutration: %Image coordinates style (horizontal index first) % %(x1,y1) | (x2,y1) % | 1-dy % 1-dx | dx % ------(a,b)------------ % | % | % | % | dy % | % | %(x1,y2) | (x2,y2) if ((x1 >= 1) && (y1 >= 1) && (x2 <= W) && (y2 <= H)) %Load 2x2 pixels i11 = input_image(y1, x1, :); %Top left pixel i21 = input_image(y2, x1, :); %Bottom left pixel i12 = input_image(y1, x2, :); %Top right pixel i22 = input_image(y2, x2, :); %Bottom right pixel %Interpolation wieghts dx = x2 - a; dy = y2 - b; %Bi-lienar interpolation output_image(j, i, :) = i11*dx*dy + i21*dx*(1-dy) + i12*(1-dx)*dy + i22*(1-dx)*(1-dy); end endendimshow(output_image);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Verify implementation by comparing with Matalb build in function imwarp:tform = affine2d(M');ref_image = imwarp(input_image, tform, 'OutputView', imref2d(size(input_image)), 'Interp', 'linear');figure;imshow(ref_image)figure;imshow(output_image - ref_image)max_diff = max(abs(output_image(:) - ref_image(:)));disp(['Maximum difference from imwarp = ', num2str(max_diff)]);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Result:Remark:I missed the following execelnt post that resizes an image using bilinear interpolation (bilinear interpolation is explained better):Resize an image with bilinear interpolation without imresize 这篇关于Matlab图像旋转的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-31 00:37