本文介绍了如何使用LUT png进行CIColorCube过滤?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想使用查找表png(。
I would like to use a lookup table png (example) as color cube data for the CIColorCube
filter in Swift. All I tried (and found) so far are examples with a computed color cube as in this example.
如何将png作为查找数据读取?
推荐答案
我现在用和项目,以调整他们对Swift的Objective-C实现:
I now used this and this project to adapt their Objective-C implementation for Swift:
func colorCubeFilterFromLUT(imageName : NSString) -> CIFilter? {
let kDimension : UInt = 64
let lutImage = UIImage(named: imageName)!.CGImage
let lutWidth = CGImageGetWidth(lutImage!)
let lutHeight = CGImageGetHeight(lutImage!)
let rowCount = lutHeight / kDimension
let columnCount = lutWidth / kDimension
if ((lutWidth % kDimension != 0) || (lutHeight % kDimension != 0) || (rowCount * columnCount != kDimension)) {
NSLog("Invalid colorLUT %@", imageName);
return nil
}
let bitmap = self.createRGBABitmapFromImage(lutImage)
let size = Int(kDimension) * Int(kDimension) * Int(kDimension) * sizeof(Float) * 4
let data = UnsafeMutablePointer<Float>(malloc(UInt(size)))
var bitmapOffset : Int = 0
var z : UInt = 0
for (var row: UInt = 0; row < rowCount; row++)
{
for (var y: UInt = 0; y < kDimension; y++)
{
var tmp = z
for (var col: UInt = 0; col < columnCount; col++)
{
for (var x: UInt = 0; x < kDimension; x++) {
let alpha = Float(bitmap[Int(bitmapOffset)]) / 255.0
let red = Float(bitmap[Int(bitmapOffset+1)]) / 255.0
let green = Float(bitmap[Int(bitmapOffset+2)]) / 255.0
let blue = Float(bitmap[Int(bitmapOffset+3)]) / 255.0
var dataOffset = Int(z * kDimension * kDimension + y * kDimension + x) * 4
data[dataOffset] = red
data[dataOffset + 1] = green
data[dataOffset + 2] = blue
data[dataOffset + 3] = alpha
bitmapOffset += 4
}
z++
}
z = tmp
}
z += columnCount
}
let colorCubeData = NSData(bytesNoCopy: data, length: size, freeWhenDone: true)
// create CIColorCube Filter
var filter = CIFilter(name: "CIColorCube")
filter.setValue(colorCubeData, forKey: "inputCubeData")
filter.setValue(kDimension, forKey: "inputCubeDimension")
return filter
}
func createRGBABitmapFromImage(inImage: CGImage) -> UnsafeMutablePointer<Float> {
//Get image width, height
let pixelsWide = CGImageGetWidth(inImage)
let pixelsHigh = CGImageGetHeight(inImage)
// Declare the number of bytes per row. Each pixel in the bitmap in this
// example is represented by 4 bytes; 8 bits each of red, green, blue, and
// alpha.
let bitmapBytesPerRow = Int(pixelsWide) * 4
let bitmapByteCount = bitmapBytesPerRow * Int(pixelsHigh)
// Use the generic RGB color space.
let colorSpace = CGColorSpaceCreateDeviceRGB()
// Allocate memory for image data. This is the destination in memory
// where any drawing to the bitmap context will be rendered.
let bitmapData = malloc(CUnsignedLong(bitmapByteCount)) // bitmap
let bitmapInfo = CGBitmapInfo(rawValue: CGImageAlphaInfo.PremultipliedFirst.rawValue)
// Create the bitmap context. We want pre-multiplied RGBA, 8-bits
// per component. Regardless of what the source image format is
// (CMYK, Grayscale, and so on) it will be converted over to the format
// specified here by CGBitmapContextCreate.
let context = CGBitmapContextCreate(bitmapData, pixelsWide, pixelsHigh, 8, UInt(bitmapBytesPerRow), colorSpace, bitmapInfo)
let rect = CGRect(x:0, y:0, width:Int(pixelsWide), height:Int(pixelsHigh))
// Draw the image to the bitmap context. Once we draw, the memory
// allocated for the context for rendering will then contain the
// raw image data in the specified color space.
CGContextDrawImage(context, rect, inImage)
// Now we can get a pointer to the image data associated with the bitmap
// context.
// var data = CGBitmapContextGetData(context)
// var dataType = UnsafeMutablePointer<Float>(data)
// return dataType
var convertedBitmap = malloc(UInt(bitmapByteCount * sizeof(Float)))
vDSP_vfltu8(UnsafePointer<UInt8>(bitmapData), 1, UnsafeMutablePointer<Float>(convertedBitmap), 1, vDSP_Length(bitmapByteCount))
free(bitmapData)
return UnsafeMutablePointer<Float>(convertedBitmap)
}
另见答案。
这篇关于如何使用LUT png进行CIColorCube过滤?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!