问题描述
当我在Python中进行数学计算时,我们正在使用哪个库.例如.
When I do math computation in Python which library are we using. E.g.
>>> 2**0.5
1.4142135623730951
如何找到所使用的源代码?这仅仅是math.pow()
函数吗?不幸的是,inspect.getsource(pow)
返回一种错误.
How can I find the source code that was used? Is this just the math.pow()
function? Unfortunately, inspect.getsource(pow)
returns a kind of error.
在Github上进行搜索可将其范围缩小至 13 个可能的文件.而且我还不完全了解cPython的构造方式.
Searching on Github narrows it down to 13 possible files. And I don't fully understand how cPython is constructed.
/*[clinic input]
math.pow
x: double
y: double
/
Return x**y (x to the power of y).
[clinic start generated code]*/
static PyObject *
math_pow_impl(PyObject *module, double x, double y)
/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
{
double r;
int odd_y;
/* deal directly with IEEE specials, to cope with problems on various
platforms whose semantics don't exactly match C99 */
r = 0.; /* silence compiler warning */
if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
errno = 0;
if (Py_IS_NAN(x))
r = y == 0. ? 1. : x; /* NaN**0 = 1 */
else if (Py_IS_NAN(y))
r = x == 1. ? 1. : y; /* 1**NaN = 1 */
else if (Py_IS_INFINITY(x)) {
odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
if (y > 0.)
r = odd_y ? x : fabs(x);
else if (y == 0.)
r = 1.;
else /* y < 0. */
r = odd_y ? copysign(0., x) : 0.;
}
else if (Py_IS_INFINITY(y)) {
if (fabs(x) == 1.0)
r = 1.;
else if (y > 0. && fabs(x) > 1.0)
r = y;
else if (y < 0. && fabs(x) < 1.0) {
r = -y; /* result is +inf */
if (x == 0.) /* 0**-inf: divide-by-zero */
errno = EDOM;
}
else
r = 0.;
}
}
else {
/* let libm handle finite**finite */
errno = 0;
PyFPE_START_PROTECT("in math_pow", return 0);
r = pow(x, y);
PyFPE_END_PROTECT(r);
/* a NaN result should arise only from (-ve)**(finite
non-integer); in this case we want to raise ValueError. */
if (!Py_IS_FINITE(r)) {
if (Py_IS_NAN(r)) {
errno = EDOM;
}
/*
an infinite result here arises either from:
(A) (+/-0.)**negative (-> divide-by-zero)
(B) overflow of x**y with x and y finite
*/
else if (Py_IS_INFINITY(r)) {
if (x == 0.)
errno = EDOM;
else
errno = ERANGE;
}
}
}
if (errno && is_error(r))
return NULL;
else
return PyFloat_FromDouble(r);
}
这是我在Python 2**0.5
中找到2的平方根时使用的代码吗?
Is this the code that's being used when I find square root of 2 in Python 2**0.5
?
环顾四周,似乎**
与pow()
相同,我们可以在源代码中寻找__pow__()
方法:
Looking around it seems that **
is the same as pow()
and we can look for the __pow__()
method in the source code:
-
__pow__
- 在Python中内置的pow()和math.pow()浮点数?
-
numbers.py
了解Python如何看待数字
- search results for
__pow__
- Difference between the built-in pow() and math.pow() for floats, in Python?
numbers.py
for How Python thinks of numbers
共识似乎是pow
来自 libm
图书馆.可能类似于这一个,e_powf.c
.也有 e_pow.c
The consensus seems to be that pow
is coming from the libm
library. Possibly like this one, e_powf.c
. Also there is e_pow.c
/* e_powf.c -- float version of e_pow.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <math.h>
#include <math_private.h>
static const float huge = 1.0e+30, tiny = 1.0e-30;
static const float
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
zero = 0.0,
one = 1.0,
two = 2.0,
two24 = 16777216.0, /* 0x4b800000 */
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 6.0000002384e-01, /* 0x3f19999a */
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
L6 = 2.0697501302e-01, /* 0x3e53f142 */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08, /* 0x3331bb4c */
lg2 = 6.9314718246e-01, /* 0x3f317218 */
lg2_h = 6.93145752e-01, /* 0x3f317200 */
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
float
__ieee754_powf(float x, float y)
{
float z,ax,z_h,z_l,p_h,p_l;
float y1,t1,t2,r,s,t,u,v,w;
int32_t i,j,k,yisint,n;
int32_t hx,hy,ix,iy,is;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if(iy==0) return one;
/* x==+-1 */
if(x == 1.0) return one;
if(x == -1.0 && isinf(y)) return one;
/* +-NaN return x+y */
if(__builtin_expect(ix > 0x7f800000 ||
iy > 0x7f800000, 0))
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x4b800000) yisint = 2; /* even integer y */
else if(iy>=0x3f800000) {
k = (iy>>23)-0x7f; /* exponent */
j = iy>>(23-k);
if((j<<(23-k))==iy) yisint = 2-(j&1);
}
}
/* special value of y */
if (__builtin_expect(iy==0x7f800000, 0)) { /* y is +-inf */
if (ix==0x3f800000)
return y - y; /* inf**+-1 is NaN */
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3f800000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3f000000) { /* y is 0.5 */
if(__builtin_expect(hx>=0, 1)) /* x >= +0 */
return __ieee754_sqrtf(x);
}
ax = fabsf(x);
/* special value of x */
if(__builtin_expect(ix==0x7f800000||ix==0||ix==0x3f800000, 0)){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3f800000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
/* (x<0)**(non-int) is NaN */
if(__builtin_expect(((((u_int32_t)hx>>31)-1)|yisint)==0, 0))
return (x-x)/(x-x);
/* |y| is huge */
if(__builtin_expect(iy>0x4d000000, 0)) { /* if |y| > 2**27 */
/* over/underflow if x is not close to one */
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-1; /* t has 20 trailing zeros */
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
GET_FLOAT_WORD(is,t1);
SET_FLOAT_WORD(t1,is&0xfffff000);
t2 = v-(t1-u);
} else {
float s2,s_h,s_l,t_h,t_l;
/* Avoid internal underflow for tiny y. The exact value
of y does not matter if |y| <= 2**-32. */
if (iy < 0x2f800000)
SET_FLOAT_WORD (y, (hy & 0x80000000) | 0x2f800000);
n = 0;
/* take care subnormal number */
if(ix<0x00800000)
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
n += ((ix)>>23)-0x7f;
j = ix&0x007fffff;
/* determine interval */
ix = j|0x3f800000; /* normalize ix */
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00800000;}
SET_FLOAT_WORD(ax,ix);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
s = u*v;
s_h = s;
GET_FLOAT_WORD(is,s_h);
SET_FLOAT_WORD(s_h,is&0xfffff000);
/* t_h=ax+bp[k] High */
SET_FLOAT_WORD (t_h,
((((ix>>1)|0x20000000)+0x00400000+(k<<21))
& 0xfffff000));
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = s*s;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+s);
s2 = s_h*s_h;
t_h = (float)3.0+s2+r;
GET_FLOAT_WORD(is,t_h);
SET_FLOAT_WORD(t_h,is&0xfffff000);
t_l = r-((t_h-(float)3.0)-s2);
/* u+v = s*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*s;
/* 2/(3log2)*(s+...) */
p_h = u+v;
GET_FLOAT_WORD(is,p_h);
SET_FLOAT_WORD(p_h,is&0xfffff000);
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (float)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
GET_FLOAT_WORD(is,t1);
SET_FLOAT_WORD(t1,is&0xfffff000);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
s = -one; /* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
GET_FLOAT_WORD(is,y);
SET_FLOAT_WORD(y1,is&0xfffff000);
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
GET_FLOAT_WORD(j,z);
if (__builtin_expect(j>0x43000000, 0)) /* if z > 128 */
return s*huge*huge; /* overflow */
else if (__builtin_expect(j==0x43000000, 0)) { /* if z == 128 */
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
else if (__builtin_expect((j&0x7fffffff)>0x43160000, 0))/* z <= -150 */
return s*tiny*tiny; /* underflow */
else if (__builtin_expect((u_int32_t) j==0xc3160000, 0)){/* z == -150*/
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>23)-0x7f;
n = 0;
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00800000>>(k+1));
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
n = ((n&0x007fffff)|0x00800000)>>(23-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
GET_FLOAT_WORD(is,t);
SET_FLOAT_WORD(t,is&0xfffff000);
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
GET_FLOAT_WORD(j,z);
j += (n<<23);
if((j>>23)<=0) /* subnormal output */
{
z = __scalbnf (z, n);
float force_underflow = z * z;
math_force_eval (force_underflow);
}
else SET_FLOAT_WORD(z,j);
return s*z;
}
strong_alias (__ieee754_powf, __powf_finite)
推荐答案
正如源中的注释/* let libm handle finite**finite */
所示,实际功能已外包给外部库.名称libm
是一个历史名称,是libc
进行数学运算的部分.并非每个人都有一个浮点单元,因此并不是每个人都需要一个处理浮点的库,并且因为当时内存很昂贵,所以将其打包到另一个库中. (是的,它要复杂得多,但基本上是……)
As the comment /* let libm handle finite**finite */
in the source suggests, the actual function got outsourced to an external library. The name libm
is a historic one and is the part of libc
that does the math. Not everyone had a floating point unit, so not everyone needed a library handling floating point and because memory was expensive in that times it had been packed into a second library. (Yes, it was much more complicated than that, but basically ...)
您要搜索的代码位于libc
的源代码中.您可能无法查看 libc
的来源,但是其中的功能已经标准化,可以使用其他库,例如Dietlibc,uClibc,newlib(cygwin),glibc等. (没有给出链接以避免链接腐烂,但是适当的搜索机器会找到所有链接).
The code you are searching for is in the source for your libc
. You may not be able to look into the source of your libc
but the functions in it are standardized and you can take other libraries, like dietlibc, uClibc, newlib (cygwin), glibc and several more. (no links given to avoid link-rot, but a proper search-machine will find them all).
其中一些库使用经过高度优化的旧SunPro代码(例如:uClibc但也有newlib),接近金属代码,但可读性强并带有注释,请在uClibc或newlib中查找文件e_pow.c
.
Some of those libraries use the old SunPro code (e.g.: uClibc but also newlib) which is highly optimized, close to metal code but readable and commented, look for the file e_pow.c
in uClibc or newlib.
如果您使用Linux,则可能会想探究GlibC的源代码,在sysdeps/ieee754/dbl-64/e_pow.c
中可以找到pow()
的许多实现之一.
If you use Linux you might be tempted to look into the source of your GlibC where one of the many implementations of pow()
can be found at sysdeps/ieee754/dbl-64/e_pow.c
.
其他库在功能上有所不同,尽管差别不大,例如:Dietlibc对log()
和exp()
使用手动滚动的i386汇编程序.
Other libraries do it a bit differently although not much, e.g.: dietlibc uses hand-rolled i386 assembler for log()
and exp()
.
这篇关于Python指数函数的源代码?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!