本文介绍了((p⇒q)⇒p)⇒p的形式证明的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试构造((p⇒q)⇒p)⇒p的形式证明.在惠誉.我知道这是真的,但是我怎么证明呢?

I'm trying to construct a formal proof for ((p ⇒ q) ⇒ p) ⇒ p. in Fitch. I know this is true, but how do I prove it?

我只能使用And Intro,Andlim,或Inro,Or Elim,Neg Intro,Neg Elim,Impl Intro,Impl Elim,Biconditional Intro和Biconditional Elim.

I can only use And Intro, And Elim, Or Inro, Or Elim, Neg Intro, Neg Elim, Impl Intro, Impl Elim, Biconditional Intro, and Biconditional Elim.

推荐答案

以下证明使用Klement的Fitch样式证明检查器.符号和规则的描述在 forallx 中.两者的链接都在下面.

The following proof uses Klement's Fitch-style proof checker. Description of the symbols and the rules are in forallx. Links to both are below.

Philosophy Stack Exchange上的版本略有不同: https://philosophy.stackexchange.com/a/55395/29944 那是尝试获得此类问题答案的另一个地方.

A slightly different version is on Philosophy Stack Exchange: https://philosophy.stackexchange.com/a/55395/29944 That would be another place to try to get answers to such questions.

参考

Kevin Klement的JavaScript/PHP Fitch风格自然演绎证明编辑器和检查器 http://proofs.openlogicproject.org/

Kevin Klement's JavaScript/PHP Fitch-style natural deduction proof editor and checker http://proofs.openlogicproject.org/

P. D.Magnus,Tim Button以及J.Robert Loftis的补充内容,由Aaron Thomas-Bolduc,Richard Zach,forallx Calgary Remix混合和修订,2018年冬季."> http://forallx.openlogicproject.org/

P. D. Magnus, Tim Button with additions by J. Robert Loftis remixed and revised by Aaron Thomas-Bolduc, Richard Zach, forallx Calgary Remix: An Introduction to Formal Logic, Winter 2018. http://forallx.openlogicproject.org/

这篇关于((p⇒q)⇒p)⇒p的形式证明的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-29 07:55