剪出一系列具有南值的

剪出一系列具有南值的

本文介绍了 pandas 剪出一系列具有南值的值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想将pandas cut功能应用于包含NaN的系列.理想的行为是将非NaN元素存储到桶中,并为NaN元素返回NaN.

I would like to apply the pandas cut function to a series that includes NaNs. The desired behavior is that it buckets the non-NaN elements and returns NaN for the NaN-elements.

import pandas as pd
numbers_with_nan = pd.Series([3,1,2,pd.NaT,3])
numbers_without_nan = numbers_with_nan.dropna()

对于没有NaN的系列,裁剪效果很好:

The cutting works fine for the series without NaNs:

pd.cut(numbers_without_nan, bins=[1,2,3], include_lowest=True)
0      (2.0, 3.0]
1    (0.999, 2.0]
2    (0.999, 2.0]
4      (2.0, 3.0]

当我剪切包含NaN的序列时,元素3正确返回为NaN,但是最后一个元素分配了错误的bin:

When I cut the series that contains NaNs, element 3 is correctly returned as NaN, but the last element gets the wrong bin assigned:

pd.cut(numbers_with_nan, bins=[1,2,3], include_lowest=True)
0      (2.0, 3.0]
1    (0.999, 2.0]
2    (0.999, 2.0]
3             NaN
4    (0.999, 2.0]

如何获得以下输出?

0      (2.0, 3.0]
1    (0.999, 2.0]
2    (0.999, 2.0]
3             NaN
4      (2.0, 3.0]

推荐答案

这很奇怪.问题不是pd.NaT,而是您的系列具有object dtype而不是常规数字系列的事实,例如floatint.

This is strange. The problem isn't pd.NaT, it's the fact your series has object dtype instead of a regular numeric series, e.g. float, int.

一个快速的解决方法是通过fillnanp.nan替换pd.NaT.这会触发从objectfloat64 dtype的系列转换,也可能导致更好的性能.

A quick fix is to replace pd.NaT with np.nan via fillna. This triggers series conversion from object to float64 dtype, and may also lead to better performance.

s = pd.Series([3, 1, 2, pd.NaT, 3])

res = pd.cut(s.fillna(np.nan), bins=[1, 2, 3], include_lowest=True)

print(res)

0    (2, 3]
1    [1, 2]
2    [1, 2]
3       NaN
4    (2, 3]
dtype: category
Categories (2, object): [[1, 2] < (2, 3]]

更通用的解决方案是事先将其显式转换为数字:

A more generalized solution is to convert to numeric explicitly beforehand:

s = pd.to_numeric(s, errors='coerce')

这篇关于 pandas 剪出一系列具有南值的值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-29 05:03