问题描述
我试图做类似的事情:使用calc(),大众,断点和线性方程式
I tried to do something similar to this:CSS Poly Fluid Sizing using calc(), vw, breakpoints and linear equations
- 对于600像素或更小的视口,包装器应跨度100%.
- 对于1800px的视口,包装器应跨越70%.
- 所有剩余视口的插值.
这是我到目前为止想出的:
This is what I came up with so far:
#square1 {
background-color: blue;
margin: 10px 0;
width: 100%;
height: 50px;
}
#square2 {
background-color: yellow;
margin: 10px auto;
width: calc(100% - 20 * (100vw - 600px)/40);
height: 50px;
}
#square3 {
background-color:green;
margin: 10px auto;
width: calc(100% - 20 * (max(100vw, 600px) - 600px)/40);
height: 50px;
}
#square4 {
background-color: red;
margin: 10px auto;
width: calc(min(100vw, (100% - 20 * (100vw - 600px)/40)));
height: 50px;
}
<div id="square1"></div>
<div id="square2"></div>
<div id="square3"></div>
<div id="square4"></div>
平方1 仅供参考.
平方2 可以通过某种方式工作,但这仅是因为我任意乘以20倍.为什么行得通?
Square 2 works somehow but only because I multiplied by factor 20 arbitrarily. Why does it work?
第3平方和第4平方应在视口小于600像素的情况下避免水平溢出.两种解决方案都不起作用.
Square 3 and 4 shall avoid a horizontal overflow in case that the viewport is smaller than 600px. Both solutions don't work.
链接到小提琴此处
有什么想法吗?谢谢.
PS:我不是专业人士.
PS: I am no professional.
推荐答案
该问题的简短答案是:
/* for IE, Opera, Android and older browsers */
.rectangle { width: calc(55vw + 270px) }
@media (max-width: 600px) { .rectangle { width: 100% } }
@media (min-width: 1800px) { .rectangle { width: 70% } }
/* modern browsers */
.rectangle { width: max(70%, min(100%, calc(55vw + 270px))) }
要使用线性方程式" ,我们需要两个点, p1(x1,y1)和 p2(x2,y2),在XY空间中,该空间在最小和最大视口大小下描绘了最小和最大大小.
To be able to use a 'Linear Equation' we need two points, p1(x1,y1) and p2(x2,y2), in an XY-space which depict a minimum and a maximum size at minimum and maximum viewport size.
幸运的是,OP给了我们一些限制:
Fortunately the OP gave us a few constraints:
- 视口宽度< = 600像素,元素宽度 100%
- 视口宽度> = 1800像素,元素宽度 70%
- 视口宽度> 600像素且<1800px,使用线性方程计算的元素宽度
使用这些约束,我们可以定义线性方程式所需的两点:
Using those constrainsts, we can define the required two points we need for the linear equation:
- 在视口宽度 600px = x1 时,元素宽度为100%(其中600px为 600px = y1 )
- 在视口宽度为 1800px = x2 时,元素宽度为70%(其中1800px为 1260px = y2 )
- at viewport width 600px = x1 the element width is 100% (of 600px is 600px = y1)
- at viewport width 1800px = x2 the element width is 70% (of 1800px is 1260px = y2)
我们可以使用两个方程式:
We have two equations at our disposal:
- Y截距形式: y = mx + b
- 点斜率形式: y = y1 + m(x-x1)
(请查看 MathIsFun:直线方程 ,易于理解的中学解释,非常值得阅读.)
(check out MathIsFun: Equation of a Straight Line, easy to understand Middle School explanations, well worth the read).
其中
-
m =(y2-y1)/(x2-x1)
x =始终定义为100vmin,vw,vh或vmax ,具体取决于:
- 视口宽度/高度无关的结果(例如,字体大小,内边距,边距)
- 视口宽度或高度相关的结果(例如,宽度,高度,填充,边距)
b = y1-m * x1 (请参阅中途页面: https://mathforum.org/library/drmath/view/52848.html )
b = y1 - m * x1 (see halfway page: https://mathforum.org/library/drmath/view/52848.html)
取代
- y =(y2-y1)/(x2-x1)* x +(y-(y2-y1)/(x2-x1)* x1)
- y = y1 +(y2-y1)/(x2-x1)*(x-x1)
完全替换的点斜率形式"是最短的,但是为了节省CPU负载,我选择进行一些手动计算,并在最终的CSS calc()中使用Y截距形式>.
Fully substituted, 'point slope form' is the shortest, but to save on CPU load, I have opted to do some manual calculations and use the Y-intercept form in my final CSS calc().
通过使用点 p1(600,600)和 p2(1800,1260)手动计算'm'和'b',我们将得出可在CSS calc()中使用的最终方程式:
By manually calculating 'm' and 'b' using points p1(600,600) and p2(1800,1260) we will yield the final equation we can use in CSS calc():
- m =(1260-1600)/(1800-600)= 0.55
- b = 600-0.55 * 600 = 270
- y = mx + b变为: y = 0.55x + 270 (最终方程)
- m = (1260 - 600) / (1800 - 600) = 0.55
- b = 600 - 0.55 * 600 = 270
- y = mx + b becomes: y = 0.55x + 270 (final equation)
width
在这种情况下取决于视口宽度,因此我们将视口单位 vw
用于'x'
width
is in this case viewport width dependent, so we use viewport unit vw
for 'x'
.rectangle { width: calc(0.55 * 100vw + 270px) } /* initially */
.rectangle { width: calc(55vw + 270px) } /* simplified */
/* with min/max constraints */
.rectangle { width: max(70%, min(100%, calc(55vw + 270px))) }
摘录
var root = document.documentElement;
var body = document.body;
var rectangle = document.getElementById('demo');
// Polyfill FOR IE11, used for rounding
if (Number.EPSILON === undefined) { Number.EPSILON = Math.pow(2, -52); }
function updateSpecs() {
var txt = "<table><tbody>";
txt += "<tr><td><b>#demo width/height<sup>*</sup></b>:" + "</td><td>" + rectangle.clientWidth + "/" + Math.round(((rectangle.clientWidth/root.clientWidth*100) + Number.EPSILON) * 1000) / 1000 + "%</td></tr>";
txt += "<tr><td><br></tr>";
txt += "<tr><td>Screen width/height:" + "</td><td>" + screen.width + "*" + screen.height + "</td></tr>";
txt += "<tr><td>window width/height:" + "</td><td>" + window.innerWidth + "*" + window.innerHeight + "</td></tr>";
txt += "<tr><td><br></tr>";
txt += "<tr><td>HTML width/height:" + "</td><td>" + root.clientWidth + "*" + root.clientHeight + "</td></tr>";
txt += "<tr><td>BODY width/height:" + "</td><td>" + body.clientWidth + "*" + body.clientHeight + "</td></tr>";
txt += "<tr><td><br></tr>";
txt += "<tr><td colspan='2'><b><sup>*</sup></b>check width 600px and 1800px</tr>";
txt += "</tbody></table>";
document.getElementById("specs").innerHTML = txt;
}
updateSpecs() // first run
window.addEventListener('resize', updateSpecs);
/**************************/
/* preferred global rules */
/**************************/
html,body { box-sizing: border-box; width: 100%; max-width: 100%; margin: 0 }
*::before,*::after, * { box-sizing: inherit }
/* debugging output */
#specs { width: 100%; padding: 5rem; font-family: monospace }
/* rectangle eye-candy only */
.rectangle { background-color: purple; margin: 10px auto; height: 50px }
/* use of linear equation */
/* CSS for IE, Opera, Android and older browsers */
.rectangle { width: calc(55vw + 270px) } /* p1(600,600) p2(1800,1260) */
@media (max-width: 600px) { .rectangle { width: 100% } }
@media (min-width: 1800px) { .rectangle { width: 70% } }
/* CSS for modern browsers, no @media required */
#rectangle { width: max(70%, min(100%, calc(55vw + 270px))) }
/*
NO MORE CSS BELOW THIS LINE, explanation and examples only
*/
/*
LINEAR EQUATION, generic math
math reference: https://www.mathsisfun.com/equation_of_line.html
USING POINTS
p1(x1,y1) - 1st point on an YX-graph => minimum viewport size, min required size limit
p2(x2,y2) - 2nd point on an YX-graph => maximum viewport size, max required size limit
parameter definition:
p1(vp_minimum, size_at_vp_minimum)
p2(vp_maximum, size_at_vp_maximum)
WHERE
x-axis: viewport size (either width or height of the browser window, device pixel, etc.)
y-axis: required size (of font, width, height, padding, margin, etc.)
CALCULATE
y = required responsive size, the CSS calc() result
WITH EITHER EQUATION
1) point slope form: y - y1 = m(x - x1)
simplified y = y1 + m(x - x1)
substituted y = y1 + (y2 - y1) / (x2 - x1) * (x - x1)
2) y-intercept form: y = mx + b
substituted y = (y2 - y1) / (x2 - x1) * x + (y1 - (y2 - y1) / (x2 - x1) * x1)
where
m = (y2 - y1) / (x2 - x1)
x = always defined as 100vmin,vw,vh or vmax depending on:
- viewport width/height independent result (e.g. fontsize, padding, margin)
- either viewport width or height dependent result (e.g. width, height, padding, margin)
b = y1 - m * x1 (see halfway: http://mathforum.org/library/drmath/view/52848.html)
RESULTING CSS
use either of six variations depending on
- pre calculated values
- SCSS pre-processor
- CSS custom variables
- CPU load
vx = is either 100vmin,vw,vh or vmax
1) point slope form
a) calc( y1 + m * (100vx - x1) ) or
b) calc( y1 + (y2 - y1) / (x2 - x1) * (100vx - x1) )
2) y-intercept form
a) calc( m * 100vx + b )
b) calc( m * 100vx + (y1 - m * x1) )
c) calc( (y2 - y1) / (x2 - x1) * 100vx + b )
d) calc( (y2 - y1) / (x2 - x1) * 100vx + (y1 - (y2 - y1) / (x2 - x1) * x1) )
NOTE: simplify 'mx' in (m * 100vx) by multiplying m * 100 and then use the vmin,vh,vw,vmax unit
e.g. y = 0.01 * 100vw => y = 1vw
*/
/*
LINEAR EQUATION, specific math for Stackoverflow question 54969190
points p1(x1= 600,y1= 600) where x1 = 600px (min vp) and y1 = 600 = 100% of 600 (width at vp 600px)
p2(x2=1800,y2=1260) where x2 = 1800px (max vp) and y2 = 1260 = 70% of 1800 (width at vp 1800px)
Using y-intercept form 'y=mx+b' and manually calculating 'm' and 'b' our final equation will be
m = (1260 - 600) / (1800 - 600) = 0.55
b = 600 - 0.55 * 600 = 270
y = 0.55x + 270
'width' is in this case viewport width dependent, so use viewport unit VW for 'x'
=> CSS calc(0.55 * 100vw + 270px)
=> simplified calc(55vw + 270px)
All below CSS calculation yield the same value for 'width'
*/
/* 1a) *//* width : max(70%, min(100%, calc(600px + 0.55 * (100vw - 600px))));/**/
/* 1b) *//* width : max(70%, min(100%, calc(600px + (1260 - 600) / (1800 - 600) * (100vw - 600px))));/**/
/* 2a) *//* width : max(70%, min(100%, calc(55vw + 270px))); /* preferred, least CPU intensive */
/* 2b) *//* width : max(70%, min(100%, calc(0.55 * 100vw + (600 - 0.55 * 600) * 1px)));/**/
/* 2c) *//* width : max(70%, min(100%, calc((1260 - 600) / (1800 - 600) * 100vw + 270px)));/**/
/* 2d) *//* width : max(70%, min(100%, calc((1260 - 600) / (1800 - 600) * 100vw + (600 - (1260 - 600) / (1800 - 600) * 600) * 1px)));/**/
<div id="demo" class="rectangle"></div>
<div id="specs"></div>
这篇关于响应/流体设计:使用线性插值进行布局的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!