问题描述
我有一系列子图,我希望它们在2个子图中共享x和y轴(按行).
I have a series of subplots, and I want them to share x and y axis in all but 2 subplots (on a per-row basis).
我知道可以单独创建所有子图,然后.
I know that it is possible to create all subplots separately and then add the sharex
/sharey
functionality afterward.
但是,鉴于我必须对大多数子图执行此操作,因此这是很多代码.
However, this is a lot of code, given that I have to do this for most subplots.
一种更有效的方法是创建具有所需sharex
/sharey
属性的所有子图,例如:
A more efficient way would be to create all subplots with the desired sharex
/sharey
properties, e.g.:
import matplotlib.pyplot as plt
fix, axs = plt.subplots(2, 10, sharex='row', sharey='row', squeeze=False)
,然后设置 unset sharex
/sharey
功能,假设地的工作方式如下:
and then set unset the sharex
/sharey
functionality, which could hypothetically work like:
axs[0, 9].sharex = False
axs[1, 9].sharey = False
上面的方法不起作用,但是有什么方法可以做到这一点?
The above does not work, but is there any way to obtain this?
推荐答案
您可以使用ax.get_shared_x_axes()
获取包含所有链接轴的Grouper对象.然后使用group.remove(ax)
从该组中删除指定的轴.您还可以group.join(ax1, ax2)
添加新共享.
You can use ax.get_shared_x_axes()
to get a Grouper object that contains all the linked axes. Then use group.remove(ax)
to remove the specified axis from that group. You can also group.join(ax1, ax2)
to add a new share.
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots(2, 10, sharex='row', sharey='row', squeeze=False)
data = np.random.rand(20, 2, 10)
for row in [0,1]:
for col in range(10):
n = col*(row+1)
ax[row, col].plot(data[n,0], data[n,1], '.')
a19 = ax[1,9]
shax = a19.get_shared_x_axes()
shay = a19.get_shared_y_axes()
shax.remove(a19)
shay.remove(a19)
a19.clear()
d19 = data[-1] * 5
a19.plot(d19[0], d19[1], 'r.')
plt.show()
这仍然需要一些调整来设置刻度,但是右下图现在有其自身的局限性.
This still needs a little tweaking to set the ticks, but the bottom-right plot now has its own limits.
这篇关于如何在Matplotlib中从两个轴取消设置`sharex`或`sharey`的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!