本文介绍了Seaborn Jointplot 为每个类添加颜色的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想使用seaborn jointplot
绘制2个变量的相关图.我尝试了很多不同的方法,但是无法根据班级在点上添加颜色.
I want to plot the correlation plot of 2 variables using seaborn jointplot
. I have tried a lot of different things but I am not able to add colors to the points according to class.
这是我的代码:
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
X = np.array([5.2945 , 3.6013 , 3.9675 , 5.1602 , 4.1903 , 4.4995 , 4.5234 ,
4.6618 , 0.76131, 0.42036, 0.71092, 0.60899, 0.66451, 0.55388,
0.63863, 0.62504, 0. , 0. , 0.49364, 0.44828, 0.43066,
0.57368, 0. , 0. , 0.64824, 0.65166, 0.64968, 0. ,
0. , 0.52522, 0.58259, 1.1309 , 0. , 0. , 1.0514 ,
0.7519 , 0.78745, 0.94873, 1.0169 , 0. , 0. , 1.0416 ,
0. , 0. , 0.93648, 0.92801, 0. , 0. , 0.89594,
0. , 0.80455, 1.0103 ])
y = np.array([ 93, 115, 107, 115, 110, 107, 102, 113, 95, 101, 116, 74, 102,
102, 78, 85, 108, 110, 109, 80, 91, 88, 99, 110, 108, 96,
105, 93, 107, 98, 88, 75, 106, 92, 82, 84, 84, 92, 115,
107, 97, 115, 85, 133, 100, 65, 96, 105, 112, 107, 107, 105])
ax = sns.jointplot(X, y, kind='reg' )
ax.set_axis_labels(xlabel='Brain scores', ylabel='Cognitive scores')
plt.tight_layout()
plt.show()
现在,我想根据类变量classes
为每个点添加颜色.
Now, I want to add colors for each point according to a class variable classes
.
推荐答案
我设法找到了一个正是我需要的解决方案.感谢@ImportanceOfBeingErnest 让我有了让 regplot
只绘制回归线的想法.
I managed to find a solution that is exactly what I need. Thank to @ImportanceOfBeingErnest that gave me the idea to let the regplot
only draw the regression line.
解决方案:
import pandas as pd
classes = np.array([1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
2., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3.,
3., 3., 3., 3., 3., 3., 3.])
df = pd.DataFrame(map(list, zip(*[X.T, y.ravel().T])))
df = df.reset_index()
df['index'] = classes[:]
g = sns.jointplot(X, y, kind='reg', scatter = False )
for i, subdata in df.groupby("index"):
sns.kdeplot(subdata.iloc[:,1], ax=g.ax_marg_x, legend=False)
sns.kdeplot(subdata.iloc[:,2], ax=g.ax_marg_y, vertical=True, legend=False)
g.ax_joint.plot(subdata.iloc[:,1], subdata.iloc[:,2], "o", ms = 8)
plt.tight_layout()
plt.show()
这篇关于Seaborn Jointplot 为每个类添加颜色的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!