问题描述
所以我使用 seaborn 制作一个 kdeplot
和 sns.kdeplot(x, y, ax=plt.gca(), cmap="coolwarm")
.
So I'm using seaborn to make a kdeplot
with sns.kdeplot(x, y, ax=plt.gca(), cmap="coolwarm")
.
我可以使用 levels
kwarg更改级别,但是我也希望能够标记轮廓.在 matplotlib 中,您只需执行 plt.clabel(CS, CS.levels, inline=True)
,但 seaborn 不会返回轮廓集合 CS
.
I can change the levels with the levels
kwarg but I want to be able to label the contours as well. In matplotlib you would simply do plt.clabel(CS, CS.levels, inline=True)
but seaborn doesn't return the contour collection CS
.
我该怎么做?还是我必须自己从头开始做这一切?
How would I do this? Or do I just have to do it all from scratch myself?
也许有一种制作包装纸的方法,该包装纸也将返回CS?我看不出怎么...
Is there maybe a way to make a wrapper which will also return CS? I can't see how though...
推荐答案
不幸的是,seaborn 竭尽全力对用户保密.除了从数据中绘制一个 plt.contour
图(实际上并不难)之外,您还可以猴子修补季节性的 _bivariate_kdeplot
并让其返回countourset.供进一步使用.
Unfortunately, seaborn does everything to keep the countourset secret from the user. Apart from drawing a plt.contour
plot from the data, which isn't actually too hard, you have the obtion to monkey patch the seaborn _bivariate_kdeplot
and let it return the countourset for further use.
如下所示:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(10)
import seaborn as sns
import seaborn.distributions as sd
from seaborn.palettes import color_palette, blend_palette
from six import string_types
def _bivariate_kdeplot(x, y, filled, fill_lowest,
kernel, bw, gridsize, cut, clip,
axlabel, cbar, cbar_ax, cbar_kws, ax, **kwargs):
"""Plot a joint KDE estimate as a bivariate contour plot."""
# Determine the clipping
if clip is None:
clip = [(-np.inf, np.inf), (-np.inf, np.inf)]
elif np.ndim(clip) == 1:
clip = [clip, clip]
# Calculate the KDE
if sd._has_statsmodels:
xx, yy, z = sd._statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip)
else:
xx, yy, z = sd._scipy_bivariate_kde(x, y, bw, gridsize, cut, clip)
# Plot the contours
n_levels = kwargs.pop("n_levels", 10)
cmap = kwargs.get("cmap", "BuGn" if filled else "BuGn_d")
if isinstance(cmap, string_types):
if cmap.endswith("_d"):
pal = ["#333333"]
pal.extend(color_palette(cmap.replace("_d", "_r"), 2))
cmap = blend_palette(pal, as_cmap=True)
else:
cmap = plt.cm.get_cmap(cmap)
kwargs["cmap"] = cmap
contour_func = ax.contourf if filled else ax.contour
cset = contour_func(xx, yy, z, n_levels, **kwargs)
if filled and not fill_lowest:
cset.collections[0].set_alpha(0)
kwargs["n_levels"] = n_levels
if cbar:
cbar_kws = {} if cbar_kws is None else cbar_kws
ax.figure.colorbar(cset, cbar_ax, ax, **cbar_kws)
# Label the axes
if hasattr(x, "name") and axlabel:
ax.set_xlabel(x.name)
if hasattr(y, "name") and axlabel:
ax.set_ylabel(y.name)
return ax, cset
# monkey patching
sd._bivariate_kdeplot = _bivariate_kdeplot
# some data
mean, cov = [0, 2], [(1, .5), (.5, 1)]
x, y = np.random.multivariate_normal(mean, cov, size=50).T
# plot
fig, ax = plt.subplots()
_, cs = sns.kdeplot(x, y, ax=ax, cmap="coolwarm")
# label the contours
plt.clabel(cs, cs.levels, inline=True)
# add a colorbar
fig.colorbar(cs)
plt.show()
这篇关于如何标记seaborn等高线图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!