本文介绍了在ggplot2中带有分面的qqline的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 这问题表明如何使在一个GGPLOT2一个qqline qqplot,但答案似乎只适用于绘制整个数据集在一个图表中。 我想要一种快速比较这些图表的数据子集的方法。也就是说,我想用图面上的qqlines创建qqplots。所以在下面的例子中,所有9个地块都会有线条,每个地块都有自己的截距和坡度。 df1 =数据.frame(x = rnorm(1000,10),y = sample(LETTERS [1:3],100,replace = TRUE),z = sample(letters [1:3],100,replace = TRUE)) ggplot(DF1,AES(样品= X))+ stat_qq()+ facet_grid(Y〜Z) 解决方案您可以试试这个: library(plyr) #创建一些数据 set.seed(123) df1 y = sample(LETTERS [1:3],1000,replace = TRUE),z = sample(字母[1:3],1000,replace = TRUE)) #calculate每个组的正常理论分位数 df2 q < -qqnorm(dat $ vals,plot = FALSE) dat $ xq< -q $ x dat } ) #绘制与理论位数 ggplot样本值(数据= DF2,AES(X = XQ,Y =瓦尔斯))+ geom_point()+ geom_smooth(方法= LM, se = FALSE)+ xlab(理论)+ ylab(Sample)+ facet_grid(y〜z) pre> This question showed how to make a qqplot with a qqline in ggplot2, but the answer only seems to work when plotting the entire dataset in a single graph.I want a way to quickly compare these plots for subsets of my data. That is, I want to make qqplots with qqlines on a graph with facets. So in the following example, there would be lines for all 9 plots, each with their own intercept and slope.df1 = data.frame(x = rnorm(1000, 10), y = sample(LETTERS[1:3], 100, replace = TRUE), z = sample(letters[1:3], 100, replace = TRUE))ggplot(df1, aes(sample = x)) + stat_qq() + facet_grid(y ~ z) 解决方案 You may try this:library(plyr)# create some dataset.seed(123)df1 <- data.frame(vals = rnorm(1000, 10), y = sample(LETTERS[1:3], 1000, replace = TRUE), z = sample(letters[1:3], 1000, replace = TRUE))# calculate the normal theoretical quantiles per groupdf2 <- ddply(.data = df1, .variables = .(y, z), function(dat){ q <- qqnorm(dat$vals, plot = FALSE) dat$xq <- q$x dat})# plot the sample values against the theoretical quantilesggplot(data = df2, aes(x = xq, y = vals)) + geom_point() + geom_smooth(method = "lm", se = FALSE) + xlab("Theoretical") + ylab("Sample") + facet_grid(y ~ z) 这篇关于在ggplot2中带有分面的qqline的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-29 03:54