问题描述
我有一个关于将tseries.period.PeriodIndex转换为日期时间的问题.
I have a question regarding converting a tseries.period.PeriodIndex into a datetime.
我有一个看起来像这样的DataFrame:
I have a DataFrame which looks like this:
colors country
time_month
2010-09 xxx xxx
2010-10 xxx xxx
2010-11 xxx xxx
...
time_month是索引.
time_month is the index.
type(df.index)
返回
class 'pandas.tseries.period.PeriodIndex'
当我尝试使用df进行VAR分析时( http://statsmodels.sourceforge.net/devel/vector_ar.html#vector-autoregressions-tsa-vector-ar ),
When I try to use the df for a VAR analysis (http://statsmodels.sourceforge.net/devel/vector_ar.html#vector-autoregressions-tsa-vector-ar),
VAR(mdata)
返回:
Given a pandas object and the index does not contain dates
因此,显然,Period无法识别为日期时间.现在,我的问题是如何将索引(time_month)转换为VAR分析可以使用的日期时间?
So apparently, Period is not recognized as a datetime. Now, my question is how to convert the index (time_month) into a datetime the VAR analysis can work with?
df.index = pandas.DatetimeIndex(df.index)
返回
cannot convert Int64Index->DatetimeIndex
感谢您的帮助!
推荐答案
您可以对此使用PeriodIndex的to_timestamp
方法:
You can use the to_timestamp
method of PeriodIndex for this:
In [25]: pidx = pd.period_range('2012-01-01', periods=10)
In [26]: pidx
Out[26]:
<class 'pandas.tseries.period.PeriodIndex'>
[2012-01-01, ..., 2012-01-10]
Length: 10, Freq: D
In [27]: pidx.to_timestamp()
Out[27]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-01, ..., 2012-01-10]
Length: 10, Freq: D, Timezone: None
在较早版本的Pandas中,方法为to_datetime
In older versions of Pandas the method was to_datetime
这篇关于将PeriodIndex转换为DateTimeIndex?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!