问题描述
我只是想使用新的OpenCV Python接口(cv2)绘制直方图。
I was just trying to draw histogram using new OpenCV Python interface ( cv2 ).
下面是我尝试的代码:
import cv2
import numpy as np
import time
img = cv2.imread('zzz.jpg')
h = np.zeros((300,256,3))
b,g,r = cv2.split(img)
bins = np.arange(256).reshape(256,1)
color = [ (255,0,0),(0,255,0),(0,0,255) ]
for item,col in zip([b,g,r],color):
hist_item = cv2.calcHist([item],[0],None,[256],[0,255])
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
hist=np.int32(np.around(hist_item))
pts = np.column_stack((bins,hist))
cv2.polylines(h,[pts],False,col)
h=np.flipud(h)
cv2.imshow('colorhist',h)
cv2.waitKey(0)
它工作正常。下面是获得的结果直方图。
And it works fine. Below is the resulting histogram i obtained.
然后我修改了一些代码。
Then i modified the code a little bit.
即将代码 b,g,r = cv2.split(img)
中的第六行更改为 b,g,r = img [:,:,0],img [:,:,1],img [:,:,2]
cv2.split
)。
ie changed the sixth line in code b,g,r = cv2.split(img)
to b,g,r = img[:,:,0], img[:,:,1], img[:,:,2]
(because it works a little faster than cv2.split
).
现在的输出是不同的。下面是输出。
Now the output is something different. Below is the output.
我检查了 b,g,r
的值两个代码。他们是一样的。
I checked the values of b,g,r
from both the codes. They are same.
区别在于 cv2.calcHist
的输出。 hist_item
的结果在两种情况下都不同。
Difference lies in the output of cv2.calcHist
. Result of hist_item
is different in both the cases.
问题:
为什么输入相同时 cv2.calcHist
的结果不同?
How does it happen? Why the result of cv2.calcHist
is different when inputs are same?
EDIT
我尝试了不同的代码。现在,我的第一个代码的numpy版本。
I tried a different code. Now, a numpy version of my first code.
import cv2
import numpy as np
img = cv2.imread('zzz.jpg')
h = np.zeros((300,256,3))
b,g,r = img[:,:,0],img[:,:,1],img[:,:,2]
bins = np.arange(257)
bin = bins[0:-1]
color = [ (255,0,0),(0,255,0),(0,0,255) ]
for item,col in zip([b,g,r],color):
N,bins = np.histogram(item,bins)
v=N.max()
N = np.int32(np.around((N*255)/v))
N=N.reshape(256,1)
pts = np.column_stack((bin,N))
cv2.polylines(h,[pts],False,col,2)
h=np.flipud(h)
cv2.imshow('img',h)
cv2.waitKey(0)
输出与第一个相同。
您可以在这里取得我的原始图片:
You can get my original image here: zzz.jpg
谢谢。
推荐答案
您应该复制数组:
b,g,r = img[:,:,0].copy(), img[:,:,1].copy(), img[:,:,2].copy()
$ b b
但是,由于calcHist()可以接受通道参数,因此不需要将img拆分为三个数组。
But, since calcHist() can accept channels parameter, you need not to split your img to three array.
import cv2
import numpy as np
img = cv2.imread('zzzyj.jpg')
h = np.zeros((300,256,3))
bins = np.arange(256).reshape(256,1)
color = [ (255,0,0),(0,255,0),(0,0,255) ]
for ch, col in enumerate(color):
hist_item = cv2.calcHist([img],[ch],None,[256],[0,255])
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
hist=np.int32(np.around(hist_item))
pts = np.column_stack((bins,hist))
cv2.polylines(h,[pts],False,col)
h=np.flipud(h)
cv2.imshow('colorhist',h)
cv2.waitKey(0)
这篇关于在OpenCV-Python中绘制直方图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!