问题描述
假设我有一个彩色图像,当然这将由python中的三维数组表示,比如说形状(nxmx 3)并将其称为img。
Say that I have a color image, and naturally this will be represented by a 3-dimensional array in python, say of shape (n x m x 3) and call it img.
我想要一个新的2-d数组,将其称为narray以具有形状(3,nxm),使得该数组的每一行分别包含R,G和B通道的扁平版本。此外,它应该具有我可以轻松地重建任何原始频道的属性,例如
I want a new 2-d array, call it "narray" to have a shape (3,nxm), such that each row of this array contains the "flattened" version of R,G,and B channel respectively. Moreover, it should have the property that I can easily reconstruct back any of the original channel by something like
narray[0,].reshape(img.shape[0:2]) #so this should reconstruct back the R channel.
问题是如何从img构建narray?简单的img.reshape(3,-1)不起作用,因为元素的顺序对我来说是不可取的。
The question is how can I construct the "narray" from "img"? The simple img.reshape(3,-1) does not work as the order of the elements are not desirable for me.
谢谢
推荐答案
您需要使用重新排列维度。现在, nxmx 3
将被转换为 3 x(n * m)
,因此将最后一个轴发送到前面并向右移动剩余轴的顺序(0,1)
。最后,重塑为 3
行。因此,实现将是 -
You need to use np.transpose
to rearrange dimensions. Now, n x m x 3
is to be converted to 3 x (n*m)
, so send the last axis to the front and shift right the order of the remaining axes (0,1)
. Finally , reshape to have 3
rows. Thus, the implementation would be -
img.transpose(2,0,1).reshape(3,-1)
样品运行 -
In [16]: img
Out[16]:
array([[[155, 33, 129],
[161, 218, 6]],
[[215, 142, 235],
[143, 249, 164]],
[[221, 71, 229],
[ 56, 91, 120]],
[[236, 4, 177],
[171, 105, 40]]])
In [17]: img.transpose(2,0,1).reshape(3,-1)
Out[17]:
array([[155, 161, 215, 143, 221, 56, 236, 171],
[ 33, 218, 142, 249, 71, 91, 4, 105],
[129, 6, 235, 164, 229, 120, 177, 40]])
这篇关于numpy with python:将3d数组转换为2d的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!