本文介绍了如何将 3d 数组 (nxnxn) 围绕 x、y 和 z 轴旋转 x 度?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个用 numpy 创建的 3d 数组,我想知道如何按自定义角度旋转它,而不仅仅是 numpy 具有的 rot90
函数.有人可以帮忙吗?
I have a 3d array created with numpy, and I was wondering how I can rotate it by a custom angle, not just the rot90
function that numpy has. Can anyone help?
3d 矩阵表示图像(如立方体或其他形状)即
The 3d matrix represents an image (such as a cube, or some other shape) ie
0:
1 1 1
1 1
1 1 1
1:
1 1
1 1
2:
1 1 1
1 1
1 1 1
移动解决方案来回答
推荐答案
经过反复试验,我想出了一些用于我的目的的代码(0 表示数组中的空,另一个数字表示填充的体素.
After some trial and error I came up with some code for my purposes (0 means empty in the array, another number will mean a filled voxel.
def rotate(self, deg_angle, axis):
d = len(self.matrix)
h = len(self.matrix[0])
w = len(self.matrix[0][0])
min_new_x = 0
max_new_x = 0
min_new_y = 0
max_new_y = 0
min_new_z = 0
max_new_z = 0
new_coords = []
angle = radians(deg_angle)
for z in range(d):
for y in range(h):
for x in range(w):
new_x = None
new_y = None
new_z = None
if axis == "x":
new_x = int(round(x))
new_y = int(round(y*cos(angle) - z*sin(angle)))
new_z = int(round(y*sin(angle) + z*cos(angle)))
elif axis == "y":
new_x = int(round(z*sin(angle) + x*cos(angle)))
new_y = int(round(y))
new_z = int(round(z*cos(angle) - x*sin(angle)))
elif axis == "z":
new_x = int(round(x*cos(angle) - y*sin(angle)))
new_y = int(round(x*sin(angle) + y*cos(angle)))
new_z = int(round(z))
val = self.matrix.item((z, y, x))
new_coords.append((val, new_x, new_y, new_z))
if new_x < min_new_x: min_new_x = new_x
if new_x > max_new_x: max_new_x = new_x
if new_y < min_new_y: min_new_y = new_y
if new_y > max_new_y: max_new_y = new_y
if new_z < min_new_z: min_new_z = new_z
if new_z > max_new_z: max_new_z = new_z
new_x_offset = abs(min_new_x)
new_y_offset = abs(min_new_y)
new_z_offset = abs(min_new_z)
new_width = abs(min_new_x - max_new_x)
new_height = abs(min_new_y - max_new_y)
new_depth = abs(min_new_z - max_new_z)
rotated = np.empty((new_depth + 1, new_height + 1, new_width + 1))
rotated.fill(0)
for coord in new_coords:
val = coord[0]
x = coord[1]
y = coord[2]
z = coord[3]
if rotated[new_z_offset + z][new_y_offset + y][new_x_offset + x] == 0:
rotated[new_z_offset + z][new_y_offset + y][new_x_offset + x] = val
self.matrix = rotated
我使用上面代码的方式是:
The way I use the above code is:
cube = Rect_Prism(20, 20, 20) # creates a 3d array similar to above example, just bigger
cube.rotate(20, "x")
cube.rotate(60, "y")
Rect_Prism 创建一个 MxNxD 矩阵,但在本例中为 NxNxN.
Rect_Prism creates a MxNxD matrix, but in this case NxNxN.
打印结果:
# # # # # # # # # # # #
# # # # # # #
# # # # # # #
# # # # #
# # # # # # # #
# # # # # # #
# # # # # # # # # # # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # #
# # # # # #
# # # #
# # # # # # # # # # # #
# # # # #
# # # # # # # #
# # # # # # #
# # # # # # #
# # # # # # #
# # # # # #
# # # # # # # # # # # #
这篇关于如何将 3d 数组 (nxnxn) 围绕 x、y 和 z 轴旋转 x 度?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!