问题描述
我想在(x,y)中找到最小距离。我正在搜索有关这方面的信息。但我还没有找到什么。
#include< bits / stdc ++。h&
using namespace std;
#define st first
#define nd second
pair< int,int> pointsA [1000001];
pair< int,int> pointsB [1000001];
int main(){
int n,t;
unsigned long long dist;
scanf(%d,& t);
while(t - > 0){
dist = 4000000000LL;
scanf(%d,& n);
for(int i = 0; i scanf(%d%d,& pointsA [i] .st,& pointsA [i ] .nd);
}
for(int i = 0; i scanf(%d%d,& pointsB [i] & pointsB [i] .nd);
}
for(int i = 0; i for(int j = 0; j if(abs(pointsA [i] .st-pointsB [j] .st)+ abs(pointsA [i] .nd- pointsB [j] .nd) dist = abs [i] .st - pointsB [j] .st)+ abs(pointsA [i] .nd - pointsB [j] .nd);
}
}
printf(%lld\\\
,dist);
}
}
}
我的代码在O n ^ 2),但太慢了。我不知道它是否有用,但y在pointsA总是> 0和y在pointsB总是<我的代码比较实际距离到下一个,并选择最小。
例如:
输入:
2
3
-2 2
1 3
3 1
0 -1
-1 -2
1 -2
1
1 1
-1 -1
$ b b
输出:
5
$我的解决方案(注意为了简单起见,我不关心溢出在
4
manhattan_dist $ c $ c>因此,它不适用于
unsigned long long
):#include< cstdlib>
#include< cstdio>
#include< cassert>
#include< vector>
#include< limits>
#include< algorithm>
typedef std :: pair< int,int>点;
typedef std :: vector< std :: pair< int,int> >点列表;
static inline bool cmp_by_x(const Point& a,const Point& b)
{
if(a.first< b.first){
return true;
} else if(a.first> b.first){
return false;
} else {
return a.second<秒;
}
}
static inline bool cmp_by_y(const Point& a,const Point& b)
{
if(a.second< ; b.second){
return true;
} else if(a.second> b.second){
return false;
} else {
return a.first<第一;
}
}
static inline unsigned manhattan_dist(const Point& a,const Point& b)
{
return std :: abs a.first-b.first)+
std :: abs(a.second - b.second);
}
int main()
{
unsigned int n_iter = 0;
if(scanf(%u,& n_iter)!= 1){
std :: abort();
}
for(unsigned i = 0; i unsigned int N = 0;
if(scanf(%u,& N)!= 1){
std :: abort();
}
if(N == 0){
continue;
}
PointsList pointsA(N);
for(PointsList :: iterator it = pointsA.begin(),endi = pointsA.end(); it!= endi; ++ it){
if(scanf(%d%d ,& it-> first,& it-> second)!= 2){
std :: abort();
}
assert(it-> second> 0);
}
PointsList pointsB(N);
for(PointsList :: iterator it = pointsB.begin(),endi = pointsB.end(); it!= endi; ++ it){
if(scanf(%d%d ,& it-> first,& it-> second)!= 2){
std :: abort();
}
assert(it-> second< 0);
}
std :: sort(pointsA.begin(),pointsA.end(),cmp_by_y);
std :: sort(pointsB.begin(),pointsB.end(),cmp_by_y);
const PointsList :: const_iterator min_a_by_y = pointsA.begin();
const PointsList :: const_iterator max_b_by_y =(pointsB.rbegin()+ 1).base();
assert(* max_b_by_y == pointsB.back());
unsigned dist = manhattan_dist(* min_a_by_y,* max_b_by_y);
const unsigned diff_x = std :: abs(min_a_by_y-> first - max_b_by_y-> first);
const unsigned best_diff_y = dist - diff_x;
const int max_y_for_a = max_b_by_y-> second + dist;
const int min_y_for_b = min_a_by_y-> second - dist;
PointsList :: iterator it;
for(it = pointsA.begin()+ 1; it!= pointsA.end()&& it-> second< = max_y_for_a; ++ it){
}
if(it!= pointsA.end()){
pointsA.erase(it,pointsA.end());
}
PointsList :: reverse_iterator rit;
for(rit = pointsB.rbegin()+ 1; rit!= pointsB.rend()& rit-> second> = min_y_for_b; ++ rit){
}
if(rit!= pointsB.rend()){
pointsB.erase(pointsB.begin(),(rit + 1).base());
}
std :: sort(pointsA.begin(),pointsA.end(),cmp_by_x);
std :: sort(pointsB.begin(),pointsB.end(),cmp_by_x);
for(size_t j = 0; diff_x> 0&& j< pointsA.size(); ++ j){
const Point& cur_a_point = pointsA [j ];
assert(max_y_for_a> = cur_a_point.second);
const int diff_x = dist - best_diff_y;
const int min_x = cur_a_point.first - diff_x + 1;
const int max_x = cur_a_point.first + diff_x - 1;
const Point search_term = std :: make_pair(max_x,std :: numeric_limits< int> :: min());
PointsList :: const_iterator may_be_near_it = std :: lower_bound(pointsB.begin(),pointsB.end(),search_term,cmp_by_x);
for(PointsList :: const_reverse_iterator rit(may_be_near_it); rit!= pointsB.rend()& rit-> first> = min_x; ++ rit){
const unsigned cur_dist = manhattan_dist(cur_a_point,* rit);
if(cur_dist< dist){
dist = cur_dist;
}
}
}
printf(%u\\\
,dist);
}
}
我的机器上的基准测试(Linux + i7 2.70 GHz + gcc -Ofast -march = native):
$ make bench
time ./test1< data.txt> test1_res
real 0m7.846s
用户0m7.820s
sys 0m0.000s
time ./test2< data.txt> test2_res
real 0m0.605s
用户0m0.590s
sys 0m0.010s
test1
是您的变体,test2
是我的。I am trying to find the minimal distance in the Manhattan metric (x,y). I am searching for information about this. But I haven't found anything.
#include<bits/stdc++.h> using namespace std; #define st first #define nd second pair<int, int> pointsA[1000001]; pair<int, int> pointsB[1000001]; int main() { int n, t; unsigned long long dist; scanf("%d", &t); while(t-->0) { dist = 4000000000LL; scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d%d", &pointsA[i].st, &pointsA[i].nd); } for(int i = 0; i < n; i++) { scanf("%d%d", &pointsB[i].st, &pointsB[i].nd); } for(int i = 0; i < n ;i++) { for(int j = 0; j < n ; j++) { if(abs(pointsA[i].st - pointsB[j].st) + abs(pointsA[i].nd - pointsB[j].nd) < dist) { dist = abs(pointsA[i].st - pointsB[j].st) + abs(pointsA[i].nd - pointsB[j].nd); } } printf("%lld\n", dist); } } }
My code works in O(n^2) but is too slow. I do not know whether it will be useful but y in pointsA always be > 0 and y in pointsB always be < 0. My code compare actually distance to next and chose smallest.
for example:
input:
2 3 -2 2 1 3 3 1 0 -1 -1 -2 1 -2 1 1 1 -1 -1
Output:
5 4
解决方案My solution (note for simplicity I do not care about overflow in
manhattan_dist
and for that reason it does not work withunsigned long long
):#include <cstdlib> #include <cstdio> #include <cassert> #include <vector> #include <limits> #include <algorithm> typedef std::pair<int, int> Point; typedef std::vector<std::pair<int, int> > PointsList; static inline bool cmp_by_x(const Point &a, const Point &b) { if (a.first < b.first) { return true; } else if (a.first > b.first) { return false; } else { return a.second < b.second; } } static inline bool cmp_by_y(const Point &a, const Point &b) { if (a.second < b.second) { return true; } else if (a.second > b.second) { return false; } else { return a.first < b.first; } } static inline unsigned manhattan_dist(const Point &a, const Point &b) { return std::abs(a.first - b.first) + std::abs(a.second - b.second); } int main() { unsigned int n_iter = 0; if (scanf("%u", &n_iter) != 1) { std::abort(); } for (unsigned i = 0; i < n_iter; ++i) { unsigned int N = 0; if (scanf("%u", &N) != 1) { std::abort(); } if (N == 0) { continue; } PointsList pointsA(N); for (PointsList::iterator it = pointsA.begin(), endi = pointsA.end(); it != endi; ++it) { if (scanf("%d%d", &it->first, &it->second) != 2) { std::abort(); } assert(it->second > 0); } PointsList pointsB(N); for (PointsList::iterator it = pointsB.begin(), endi = pointsB.end(); it != endi; ++it) { if (scanf("%d%d", &it->first, &it->second) != 2) { std::abort(); } assert(it->second < 0); } std::sort(pointsA.begin(), pointsA.end(), cmp_by_y); std::sort(pointsB.begin(), pointsB.end(), cmp_by_y); const PointsList::const_iterator min_a_by_y = pointsA.begin(); const PointsList::const_iterator max_b_by_y = (pointsB.rbegin() + 1).base(); assert(*max_b_by_y == pointsB.back()); unsigned dist = manhattan_dist(*min_a_by_y, *max_b_by_y); const unsigned diff_x = std::abs(min_a_by_y->first - max_b_by_y->first); const unsigned best_diff_y = dist - diff_x; const int max_y_for_a = max_b_by_y->second + dist; const int min_y_for_b = min_a_by_y->second - dist; PointsList::iterator it; for (it = pointsA.begin() + 1; it != pointsA.end() && it->second <= max_y_for_a; ++it) { } if (it != pointsA.end()) { pointsA.erase(it, pointsA.end()); } PointsList::reverse_iterator rit; for (rit = pointsB.rbegin() + 1; rit != pointsB.rend() && rit->second >= min_y_for_b; ++rit) { } if (rit != pointsB.rend()) { pointsB.erase(pointsB.begin(), (rit + 1).base()); } std::sort(pointsA.begin(), pointsA.end(), cmp_by_x); std::sort(pointsB.begin(), pointsB.end(), cmp_by_x); for (size_t j = 0; diff_x > 0 && j < pointsA.size(); ++j) { const Point &cur_a_point = pointsA[j]; assert(max_y_for_a >= cur_a_point.second); const int diff_x = dist - best_diff_y; const int min_x = cur_a_point.first - diff_x + 1; const int max_x = cur_a_point.first + diff_x - 1; const Point search_term = std::make_pair(max_x, std::numeric_limits<int>::min()); PointsList::const_iterator may_be_near_it = std::lower_bound(pointsB.begin(), pointsB.end(), search_term, cmp_by_x); for (PointsList::const_reverse_iterator rit(may_be_near_it); rit != pointsB.rend() && rit->first >= min_x; ++rit) { const unsigned cur_dist = manhattan_dist(cur_a_point, *rit); if (cur_dist < dist) { dist = cur_dist; } } } printf("%u\n", dist); } }
Benchmark on my machine (Linux + i7 2.70 GHz + gcc -Ofast -march=native):
$ make bench time ./test1 < data.txt > test1_res real 0m7.846s user 0m7.820s sys 0m0.000s time ./test2 < data.txt > test2_res real 0m0.605s user 0m0.590s sys 0m0.010s
test1
is your variant, andtest2
is mine.这篇关于曼哈顿最小距离公制的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!