问题描述
tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None)
我不了解此功能的职责.像查找表吗?
I cannot understand the duty of this function. Is it like a lookup table? Which means to return the parameters corresponding to each id (in ids)?
例如,在skip-gram
模型中,如果我们使用tf.nn.embedding_lookup(embeddings, train_inputs)
,那么对于每个train_input
,它会找到对应的嵌入?
For instance, in the skip-gram
model if we use tf.nn.embedding_lookup(embeddings, train_inputs)
, then for each train_input
it finds the correspond embedding?
推荐答案
embedding_lookup
函数检索params
张量的行.该行为类似于对numpy中的数组使用索引.例如
embedding_lookup
function retrieves rows of the params
tensor. The behavior is similar to using indexing with arrays in numpy. E.g.
matrix = np.random.random([1024, 64]) # 64-dimensional embeddings
ids = np.array([0, 5, 17, 33])
print matrix[ids] # prints a matrix of shape [4, 64]
params
参数也可以是张量的列表,在这种情况下,ids
将在张量之间分布.例如,给定3个张量[2, 64]
的列表,默认行为是它们将表示ids
:[0, 3]
,[1, 4]
,[2, 5]
.
params
argument can be also a list of tensors in which case the ids
will be distributed among the tensors. For example, given a list of 3 tensors [2, 64]
, the default behavior is that they will represent ids
: [0, 3]
, [1, 4]
, [2, 5]
.
partition_strategy
控制ids
在列表中的分配方式.当矩阵可能太大而无法保存为一个片段时,分区对于解决大规模问题很有用.
partition_strategy
controls the way how the ids
are distributed among the list. The partitioning is useful for larger scale problems when the matrix might be too large to keep in one piece.
这篇关于tf.nn.embedding_lookup函数有什么作用?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!