如何从预训练的词嵌入数据集创建Keras嵌入层

如何从预训练的词嵌入数据集创建Keras嵌入层

本文介绍了如何从预训练的词嵌入数据集创建Keras嵌入层?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

如何将预先训练的词嵌入加载到Keras Embedding层中?

How do I load a pre-trained word-embedding into a Keras Embedding layer?

我从 https://nlp下载了glove.6B.50d.txt(glove.6B.zip文件. stanford.edu/projects/glove/),但我不确定如何将其添加到Keras嵌入层中.请参阅: https://keras.io/layers/embeddings/

I downloaded the glove.6B.50d.txt (glove.6B.zip file from https://nlp.stanford.edu/projects/glove/) and I'm not sure how to add it to a Keras Embedding layer. See: https://keras.io/layers/embeddings/

推荐答案

您将需要将embeddingMatrix传递给Embedding层,如下所示:

You will need to pass an embeddingMatrix to the Embedding layer as follows:

Embedding(vocabLen, embDim, weights=[embeddingMatrix], trainable=isTrainable)

  • vocabLen:词汇表中的令牌数量
  • embDim:嵌入向量尺寸(在您的示例中为50)
  • embeddingMatrix:从Gloves.6B.50d.txt构建的嵌入矩阵
  • isTrainable:您是希望嵌入是可训练的还是冻结图层
  • vocabLen: number of tokens in your vocabulary
  • embDim: embedding vectors dimension (50 in your example)
  • embeddingMatrix: embedding matrix built from glove.6B.50d.txt
  • isTrainable: whether you want the embeddings to be trainable or froze the layer

glove.6B.50d.txt是由空格分隔的值的列表:单词标记+(50)嵌入值.例如the 0.418 0.24968 -0.41242 ...

The glove.6B.50d.txt is a list of whitespace-separated values: word token + (50) embedding values. e.g. the 0.418 0.24968 -0.41242 ...

要从手套文件创建pretrainedEmbeddingLayer,请执行以下操作:

To create a pretrainedEmbeddingLayer from a Glove file:

# Prepare Glove File
def readGloveFile(gloveFile):
    with open(gloveFile, 'r') as f:
        wordToGlove = {}  # map from a token (word) to a Glove embedding vector
        wordToIndex = {}  # map from a token to an index
        indexToWord = {}  # map from an index to a token

        for line in f:
            record = line.strip().split()
            token = record[0] # take the token (word) from the text line
            wordToGlove[token] = np.array(record[1:], dtype=np.float64) # associate the Glove embedding vector to a that token (word)

        tokens = sorted(wordToGlove.keys())
        for idx, tok in enumerate(tokens):
            kerasIdx = idx + 1  # 0 is reserved for masking in Keras (see above)
            wordToIndex[tok] = kerasIdx # associate an index to a token (word)
            indexToWord[kerasIdx] = tok # associate a word to a token (word). Note: inverse of dictionary above

    return wordToIndex, indexToWord, wordToGlove

# Create Pretrained Keras Embedding Layer
def createPretrainedEmbeddingLayer(wordToGlove, wordToIndex, isTrainable):
    vocabLen = len(wordToIndex) + 1  # adding 1 to account for masking
    embDim = next(iter(wordToGlove.values())).shape[0]  # works with any glove dimensions (e.g. 50)

    embeddingMatrix = np.zeros((vocabLen, embDim))  # initialize with zeros
    for word, index in wordToIndex.items():
        embeddingMatrix[index, :] = wordToGlove[word] # create embedding: word index to Glove word embedding

    embeddingLayer = Embedding(vocabLen, embDim, weights=[embeddingMatrix], trainable=isTrainable)
    return embeddingLayer

# usage
wordToIndex, indexToWord, wordToGlove = readGloveFile("/path/to/glove.6B.50d.txt")
pretrainedEmbeddingLayer = createPretrainedEmbeddingLayer(wordToGlove, wordToIndex, False)
model = Sequential()
model.add(pretrainedEmbeddingLayer)
...

这篇关于如何从预训练的词嵌入数据集创建Keras嵌入层?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-28 21:56