问题描述
我希望使用熊猫rolling_window
函数(窗口类型不是boxcar
-最好是hamming
)平滑"定期采样的30秒时间序列数据.但是,到目前为止,我尝试应用的所有窗口(从2到100的不同窗口长度)似乎都将平滑后的数据偏移为较低的值,例如:
I am looking to 'smooth' regularly-sampled 30-sec time series data using the pandas rolling_window
function, with a window type other than boxcar
- ideally hamming
. However, so far all windows which I have tried to apply, over varying window lengths from 2 to 100, appear to offset the smoothed data to lower values, e.g.:
原始数据(浅蓝色)和数据通过pd.rolling_window(data,2,'hamming')
运行.
Plot of raw data (light blue) and data run through pd.rolling_window(data,2,'hamming')
.
很明显,偏移量随时间变化.
Clearly, the quantity of offset varies through time.
这个结果不是我期望的-而是,我希望过滤后的数据集位于原始数据集的顶部.
This result isn't what I would expect - rather, I'd expect the filtered dataset to sit atop the raw one.
任何关于这里可能发生的情况的解释都是很好的.
Any explanations of what might be happening here would be great.
推荐答案
尝试对滚动窗口使用center=True
参数.
Try the center=True
argument to rolling_window.
这篇关于 pandas 滚动窗口似乎向滚动数据引入偏移的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!