一:dlib的shape_predictor_68_face_landmarks模型
该模型能够检测人脸的68个特征点(facial landmarks),定位图像中的眼睛,眉毛,鼻子,嘴巴,下颌线(ROI,Region of Interest)
下颌线[1,17]
左眼眉毛[18,22]
右眼眉毛[23,27]
鼻梁[28,31]
鼻子[32,36]
左眼[37,42]
右眼[43,48]
上嘴唇外边缘[49,55]
上嘴唇内边缘[66,68]
下嘴唇外边缘[56,60]
下嘴唇内边缘[61,65]
在使用的过程中对应的下标要减1,像数组的下标是从0开始。
二、眨眼检测
基本原理:计算眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR在某个值上下波动,当人眼闭合时,EAR迅速下降,理论上会接近于零,当时人脸检测模型还没有这么精确。所以我们认为当EAR低于某个阈值时,眼睛处于闭合状态。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度比较快,一般1~3帧就完成了眨眼动作。两个阈值都要根据实际情况设置。
程序实现:
from imutils import face_utils
import numpy as np
import dlib
import cv2
# 眼长宽比例
def eye_aspect_ratio(eye):
# (|e1-e5|+|e2-e4|) / (2|e0-e3|)
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
ear = (A + B) / (2.0 * C)
return ear
# 进行活体检测(包含眨眼和张嘴)
def liveness_detection():
vs = cv2.VideoCapture(0) # 调用第一个摄像头的信息
# 眼长宽比例值
EAR_THRESH = 0.15
EAR_CONSEC_FRAMES_MIN = 1
EAR_CONSEC_FRAMES_MAX = 3 # 当EAR小于阈值时,接连多少帧一定发生眨眼动作
# 初始化眨眼的连续帧数
blink_counter = 0
# 初始化眨眼次数总数
blink_total = 0
print("[INFO] loading facial landmark predictor...")
# 人脸检测器
detector = dlib.get_frontal_face_detector()
# 特征点检测器
predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")
# 获取左眼的特征点
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
# 获取右眼的特征点
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
print("[INFO] starting video stream thread...")
while True:
flag, frame = vs.read() # 返回一帧的数据
if not flag:
print("不支持摄像头", flag)
break
if frame is not None:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转成灰度图像
rects = detector(gray, 0) # 人脸检测
# 只能处理一张人脸
if len(rects) == 1:
shape = predictor(gray, rects[0]) # 保存68个特征点坐标的<class 'dlib.dlib.full_object_detection'>对象
shape = face_utils.shape_to_np(shape) # 将shape转换为numpy数组,数组中每个元素为特征点坐标
left_eye = shape[lStart:lEnd] # 取出左眼对应的特征点
right_eye = shape[rStart:rEnd] # 取出右眼对应的特征点
left_ear = eye_aspect_ratio(left_eye) # 计算左眼EAR
right_ear = eye_aspect_ratio(right_eye) # 计算右眼EAR
ear = (left_ear + right_ear) / 2.0 # 求左右眼EAR的均值
left_eye_hull = cv2.convexHull(left_eye) # 寻找左眼轮廓
right_eye_hull = cv2.convexHull(right_eye) # 寻找右眼轮廓
# mouth_hull = cv2.convexHull(mouth) # 寻找嘴巴轮廓
cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1) # 绘制左眼轮廓
cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1) # 绘制右眼轮廓
# EAR低于阈值,有可能发生眨眼,眨眼连续帧数加一次
if ear < EAR_THRESH:
blink_counter += 1
# EAR高于阈值,判断前面连续闭眼帧数,如果在合理范围内,说明发生眨眼
else:
if EAR_CONSEC_FRAMES_MIN <= blink_counter <= EAR_CONSEC_FRAMES_MAX:
blink_total += 1
blink_counter = 0
cv2.putText(frame, "Blinks: {}".format(blink_total), (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
elif len(rects) == 0:
cv2.putText(frame, "No face!", (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
cv2.putText(frame, "More than one face!", (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.namedWindow("Frame", cv2.WINDOW_NORMAL)
cv2.imshow("Frame", frame)
# 按下q键退出循环(鼠标要点击一下图片使图片获得焦点)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
vs.release()
liveness_detection()
三、张口检测
检测原理:类似眨眼检测,计算Mouth Aspect Ratio,MAR.当MAR大于设定的阈值时,认为张开了嘴巴。
1:采用的判定是张开后闭合计算一次张嘴动作。
mar # 嘴长宽比例
MAR_THRESH = 0.2 # 嘴长宽比例值
mouth_status_open # 初始化张嘴状态为闭嘴
当mar大于设定的比例值表示张开,张开后闭合代表一次张嘴动作
# 通过张、闭来判断一次张嘴动作
if mar > MAR_THRESH:
mouth_status_open = 1
else:
if mouth_status_open:
mouth_total += 1
mouth_status_open = 0
2: 嘴长宽比例的计算
# 嘴长宽比例
def mouth_aspect_ratio(mouth):
A = np.linalg.norm(mouth[1] - mouth[7]) # 61, 67
B = np.linalg.norm(mouth[3] - mouth[5]) # 63, 65
C = np.linalg.norm(mouth[0] - mouth[4]) # 60, 64
mar = (A + B) / (2.0 * C)
return mar
原本采用嘴唇外边缘来计算,发现嘟嘴也会被判定为张嘴,故才用嘴唇内边缘进行计算,会更加准确。
这里mouth下标的值取决于取的是“mouth”还是“inner_mouth”,由于我要画的轮廓是内嘴,所以我采用的是inner_mouth
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["inner_mouth"]
打开以下方法,进入到源码,可以看到每个特征点对应的下标是不一样的,对应的mouth特征点的下标也是不同的
(以上的区间包左边代表开始下标,右边值-1)从上面可知mouth是从(48,68),inner_mouth从(60, 68),mouth包含inner_mouth,如果取得是mouth的值,则嘴长宽比例的计算如下
# 嘴长宽比例
def mouth_aspect_ratio(mouth):
# (|m13-m19|+|m15-m17|)/(2|m12-m16|)
A = np.linalg.norm(mouth[13] - mouth[19]) # 61, 67
B = np.linalg.norm(mouth[15] - mouth[17]) # 63, 65
C = np.linalg.norm(mouth[12] - mouth[16]) # 60, 64
mar = (A + B) / (2.0 * C)
return mar
3:完整程序实现如下
from imutils import face_utils
import numpy as np
import dlib
import cv2
# 嘴长宽比例
def mouth_aspect_ratio(mouth):
A = np.linalg.norm(mouth[1] - mouth[7]) # 61, 67
B = np.linalg.norm(mouth[3] - mouth[5]) # 63, 65
C = np.linalg.norm(mouth[0] - mouth[4]) # 60, 64
mar = (A + B) / (2.0 * C)
return mar
# 进行活体检测(张嘴)
def liveness_detection():
vs = cv2.VideoCapture(0) # 调用第一个摄像头的信息
# 嘴长宽比例值
MAR_THRESH = 0.2
# 初始化张嘴次数
mouth_total = 0
# 初始化张嘴状态为闭嘴
mouth_status_open = 0
print("[INFO] loading facial landmark predictor...")
# 人脸检测器
detector = dlib.get_frontal_face_detector()
# 特征点检测器
predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")
# 获取嘴巴特征点
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["inner_mouth"]
print("[INFO] starting video stream thread...")
while True:
flag, frame = vs.read() # 返回一帧的数据
if not flag:
print("不支持摄像头", flag)
break
if frame is not None:
# 图片转换成灰色(去除色彩干扰,让图片识别更准确)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 0) # 人脸检测
# 只能处理一张人脸
if len(rects) == 1:
shape = predictor(gray, rects[0]) # 保存68个特征点坐标的<class 'dlib.dlib.full_object_detection'>对象
shape = face_utils.shape_to_np(shape) # 将shape转换为numpy数组,数组中每个元素为特征点坐标
inner_mouth = shape[mStart:mEnd] # 取出嘴巴对应的特征点
mar = mouth_aspect_ratio(inner_mouth) # 求嘴巴mar的均值
mouth_hull = cv2.convexHull(inner_mouth) # 寻找内嘴巴轮廓
cv2.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1) # 绘制嘴巴轮廓
# 通过张、闭来判断一次张嘴动作
if mar > MAR_THRESH:
mouth_status_open = 1
else:
if mouth_status_open:
mouth_total += 1
mouth_status_open = 0
cv2.putText(frame, "Mouth: {}".format(mouth_total),
(130, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "MAR: {:.2f}".format(mar), (450, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
elif len(rects) == 0:
cv2.putText(frame, "No face!", (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
cv2.putText(frame, "More than one face!", (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.namedWindow("Frame", cv2.WINDOW_NORMAL)
cv2.imshow("Frame", frame)
# 按下q键退出循环(鼠标要点击一下图片使图片获得焦点)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
vs.release()
liveness_detection()
三:眨眼和张嘴结合(摄像头)
from imutils import face_utils
import numpy as np
import dlib
import cv2
# 眼长宽比例
def eye_aspect_ratio(eye):
# (|e1-e5|+|e2-e4|) / (2|e0-e3|)
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
ear = (A + B) / (2.0 * C)
return ear
# 嘴长宽比例
def mouth_aspect_ratio(mouth):
A = np.linalg.norm(mouth[1] - mouth[7]) # 61, 67
B = np.linalg.norm(mouth[3] - mouth[5]) # 63, 65
C = np.linalg.norm(mouth[0] - mouth[4]) # 60, 64
mar = (A + B) / (2.0 * C)
return mar
# 进行活体检测(包含眨眼和张嘴)
def liveness_detection():
vs = cv2.VideoCapture(0) # 调用第一个摄像头的信息
# 眼长宽比例值
EAR_THRESH = 0.15
EAR_CONSEC_FRAMES_MIN = 1
EAR_CONSEC_FRAMES_MAX = 5 # 当EAR小于阈值时,接连多少帧一定发生眨眼动作
# 嘴长宽比例值
MAR_THRESH = 0.2
# 初始化眨眼的连续帧数
blink_counter = 0
# 初始化眨眼次数总数
blink_total = 0
# 初始化张嘴次数
mouth_total = 0
# 初始化张嘴状态为闭嘴
mouth_status_open = 0
print("[INFO] loading facial landmark predictor...")
# 人脸检测器
detector = dlib.get_frontal_face_detector()
# 特征点检测器
predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")
# 获取左眼的特征点
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
# 获取右眼的特征点
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
# 获取嘴巴特征点
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["inner_mouth"]
print("[INFO] starting video stream thread...")
while True:
flag, frame = vs.read() # 返回一帧的数据
if not flag:
print("不支持摄像头", flag)
break
if frame is not None:
# 图片转换成灰色(去除色彩干扰,让图片识别更准确)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
rects = detector(gray, 0) # 人脸检测
# 只能处理一张人脸
if len(rects) == 1:
shape = predictor(gray, rects[0]) # 保存68个特征点坐标的<class 'dlib.dlib.full_object_detection'>对象
shape = face_utils.shape_to_np(shape) # 将shape转换为numpy数组,数组中每个元素为特征点坐标
left_eye = shape[lStart:lEnd] # 取出左眼对应的特征点
right_eye = shape[rStart:rEnd] # 取出右眼对应的特征点
left_ear = eye_aspect_ratio(left_eye) # 计算左眼EAR
right_ear = eye_aspect_ratio(right_eye) # 计算右眼EAR
ear = (left_ear + right_ear) / 2.0 # 求左右眼EAR的均值
inner_mouth = shape[mStart:mEnd] # 取出嘴巴对应的特征点
mar = mouth_aspect_ratio(inner_mouth) # 求嘴巴mar的均值
left_eye_hull = cv2.convexHull(left_eye) # 寻找左眼轮廓
right_eye_hull = cv2.convexHull(right_eye) # 寻找右眼轮廓
mouth_hull = cv2.convexHull(inner_mouth) # 寻找内嘴巴轮廓
cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1) # 绘制左眼轮廓
cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1) # 绘制右眼轮廓
cv2.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1) # 绘制嘴巴轮廓
# EAR低于阈值,有可能发生眨眼,眨眼连续帧数加一次
if ear < EAR_THRESH:
blink_counter += 1
# EAR高于阈值,判断前面连续闭眼帧数,如果在合理范围内,说明发生眨眼
else:
# if the eyes were closed for a sufficient number of
# then increment the total number of blinks
if EAR_CONSEC_FRAMES_MIN <= blink_counter <= EAR_CONSEC_FRAMES_MAX:
blink_total += 1
blink_counter = 0
# 通过张、闭来判断一次张嘴动作
if mar > MAR_THRESH:
mouth_status_open = 1
else:
if mouth_status_open:
mouth_total += 1
mouth_status_open = 0
cv2.putText(frame, "Blinks: {}".format(blink_total), (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Mouth: {}".format(mouth_total),
(130, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "MAR: {:.2f}".format(mar), (450, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
elif len(rects) == 0:
cv2.putText(frame, "No face!", (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
cv2.putText(frame, "More than one face!", (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.namedWindow("Frame", cv2.WINDOW_NORMAL)
cv2.imshow("Frame", frame)
# 按下q键退出循环(鼠标要点击一下图片使图片获得焦点)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
vs.release()
# 调用摄像头进行张嘴眨眼活体检测
liveness_detection()
四:采用视频进行活体检测
最大的区别是原来通过摄像头获取一帧一帧的视频流进行判断,现在是通过视频获取一帧一帧的视频流进行判断
1:先看下获取摄像头的图像信息
# -*-coding:GBK -*-
import cv2
from PIL import Image, ImageDraw
import numpy as np
# 1.调用摄像头
# 2.读取摄像头图像信息
# 3.在图像上添加文字信息
# 4.保存图像
cap = cv2.VideoCapture(0) # 调用第一个摄像头信息
while True:
flag, frame = cap.read() # 返回一帧的数据
# #返回值:flag:bool值:True:读取到图片,False:没有读取到图片 frame:一帧的图片
# BGR是cv2 的图像保存格式,RGB是PIL的图像保存格式,在转换时需要做格式上的转换
img_PIL = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_PIL)
draw.text((100, 100), 'press q to exit', fill=(255, 255, 255))
# 将frame对象转换成cv2的格式
frame = cv2.cvtColor(np.array(img_PIL), cv2.COLOR_RGB2BGR)
cv2.imshow('capture', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.imwrite('images/out.jpg', frame)
break
cap.release()
2:获取视频的图像信息
# -*-coding:GBK -*-
import cv2
from PIL import Image, ImageDraw
import numpy as np
# 1.调用摄像头
# 2.读取摄像头图像信息
# 3.在图像上添加文字信息
# 4.保存图像
cap = cv2.VideoCapture(r'video\face13.mp4') # 调用第一个摄像头信息
while True:
flag, frame = cap.read() # 返回一帧的数据
if not flag:
break
if frame is not None:
# BGR是cv2 的图像保存格式,RGB是PIL的图像保存格式,在转换时需要做格式上的转换
img_PIL = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_PIL)
draw.text((100, 100), 'press q to exit', fill=(255, 255, 255))
# # 将frame对象转换成cv2的格式
frame = cv2.cvtColor(np.array(img_PIL), cv2.COLOR_RGB2BGR)
cv2.imshow('capture', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.imwrite('images/out.jpg', frame)
break
cv2.destroyAllWindows()
cap.release()
五:视频进行人脸识别和活体检测
1:原理
计算当出现1次眨眼或1次张嘴就判断为活人,记录下一帧的人脸图片,和要判定的人员图片进行比对,获取比对后的相似度,进行判断是否是同一个人,为了增加判断的速度,才用2帧进行一次活体检测判断。
2:代码实现
import face_recognition
from imutils import face_utils
import numpy as np
import dlib
import cv2
import sys
# 初始化眨眼次数
blink_total = 0
# 初始化张嘴次数
mouth_total = 0
# 设置图片存储路径
pic_path = r'images\viode_face.jpg'
# 图片数量
pic_total = 0
# 初始化眨眼的连续帧数以及总的眨眼次数
blink_counter = 0
# 初始化张嘴状态为闭嘴
mouth_status_open = 0
def getFaceEncoding(src):
image = face_recognition.load_image_file(src) # 加载人脸图片
# 获取图片人脸定位[(top,right,bottom,left )]
face_locations = face_recognition.face_locations(image)
img_ = image[face_locations[0][0]:face_locations[0][2], face_locations[0][3]:face_locations[0][1]]
img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB)
# display(img_)
face_encoding = face_recognition.face_encodings(image, face_locations)[0] # 对人脸图片进行编码
return face_encoding
def simcos(a, b):
a = np.array(a)
b = np.array(b)
dist = np.linalg.norm(a - b) # 二范数
sim = 1.0 / (1.0 + dist) #
return sim
# 提供对外比对的接口 返回比对的相似度
def comparison(face_src1, face_src2):
xl1 = getFaceEncoding(face_src1)
xl2 = getFaceEncoding(face_src2)
value = simcos(xl1, xl2)
print(value)
# 眼长宽比例
def eye_aspect_ratio(eye):
# (|e1-e5|+|e2-e4|) / (2|e0-e3|)
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
ear = (A + B) / (2.0 * C)
return ear
# 嘴长宽比例
def mouth_aspect_ratio(mouth):
A = np.linalg.norm(mouth[1] - mouth[7]) # 61, 67
B = np.linalg.norm(mouth[3] - mouth[5]) # 63, 65
C = np.linalg.norm(mouth[0] - mouth[4]) # 60, 64
mar = (A + B) / (2.0 * C)
return mar
# 进行活体检测(包含眨眼和张嘴)
# filePath 视频路径
def liveness_detection():
global blink_total # 使用global声明blink_total,在函数中就可以修改全局变量的值
global mouth_total
global pic_total
global blink_counter
global mouth_status_open
# 眼长宽比例值
EAR_THRESH = 0.15
EAR_CONSEC_FRAMES_MIN = 1
EAR_CONSEC_FRAMES_MAX = 5 # 当EAR小于阈值时,接连多少帧一定发生眨眼动作
# 嘴长宽比例值
MAR_THRESH = 0.2
# 人脸检测器
detector = dlib.get_frontal_face_detector()
# 特征点检测器
predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")
# 获取左眼的特征点
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
# 获取右眼的特征点
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
# 获取嘴巴特征点
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["inner_mouth"]
vs = cv2.VideoCapture(video_path)
# 总帧数(frames)
frames = vs.get(cv2.CAP_PROP_FRAME_COUNT)
frames_total = int(frames)
for i in range(frames_total):
ok, frame = vs.read(i) # 读取视频流的一帧
if not ok:
break
if frame is not None and i % 2 == 0:
# 图片转换成灰色(去除色彩干扰,让图片识别更准确)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 0) # 人脸检测
# 只能处理一张人脸
if len(rects) == 1:
if pic_total == 0:
cv2.imwrite(pic_path, frame) # 存储为图像,保存名为 文件夹名_数字(第几个文件).jpg
cv2.waitKey(1)
pic_total += 1
shape = predictor(gray, rects[0]) # 保存68个特征点坐标的<class 'dlib.dlib.full_object_detection'>对象
shape = face_utils.shape_to_np(shape) # 将shape转换为numpy数组,数组中每个元素为特征点坐标
left_eye = shape[lStart:lEnd] # 取出左眼对应的特征点
right_eye = shape[rStart:rEnd] # 取出右眼对应的特征点
left_ear = eye_aspect_ratio(left_eye) # 计算左眼EAR
right_ear = eye_aspect_ratio(right_eye) # 计算右眼EAR
ear = (left_ear + right_ear) / 2.0 # 求左右眼EAR的均值
mouth = shape[mStart:mEnd] # 取出嘴巴对应的特征点
mar = mouth_aspect_ratio(mouth) # 求嘴巴mar的均值
# EAR低于阈值,有可能发生眨眼,眨眼连续帧数加一次
if ear < EAR_THRESH:
blink_counter += 1
# EAR高于阈值,判断前面连续闭眼帧数,如果在合理范围内,说明发生眨眼
else:
if EAR_CONSEC_FRAMES_MIN <= blink_counter <= EAR_CONSEC_FRAMES_MAX:
blink_total += 1
blink_counter = 0
# 通过张、闭来判断一次张嘴动作
if mar > MAR_THRESH:
mouth_status_open = 1
else:
if mouth_status_open:
mouth_total += 1
mouth_status_open = 0
elif len(rects) == 0 and i == 90:
print("No face!")
break
elif len(rects) > 1:
print("More than one face!")
# 判断眨眼次数大于2、张嘴次数大于1则为活体,退出循环
if blink_total >= 1 or mouth_total >= 1:
break
cv2.destroyAllWindows()
vs.release()
# video_path, src = sys.argv[1], sys.argv[2]
video_path = r'video\face13.mp4' # 输入的video文件夹位置
# src = r'C:\Users\666\Desktop\zz5.jpg'
liveness_detection()
print("眨眼次数》》", blink_total)
print("张嘴次数》》", mouth_total)
# comparison(pic_path, src)
六:涉及到的代码
代码包含face_recognition库所有功能的用例,和上面涉及到的dilb库进行人脸识别的所有代码
使用dilb、face_recognition库实现,眨眼+张嘴的活体检测、和人脸识别功能。包含摄像头和视频-Python文档类资源-CSDN下载
参考:
使用dlib人脸检测模型进行人脸活体检测:眨眼+张口_Lee_01的博客-CSDN博客