gRPC 是开发中常用的开源高性能远程过程调用(RPC)框架,tonic 是基于 HTTP/2 的 gRPC 实现,专注于高性能、互操作性和灵活性。该库的创建是为了对 async/await 提供一流的支持,并充当用 Rust 编写的生产系统的核心构建块。今天我们聊聊通过使用tonic 调用grpc的的具体过程。
工程规划
rpc程序一般包含server端和client端,为了方便我们把两个程序打包到一个工程里面 新建tonic_sample工程
cargo new tonic_sample
Cargo.toml 如下
[package]
name = "tonic_sample"
version = "0.1.0"
edition = "2021"
[[bin]] # Bin to run the gRPC server
name = "stream-server"
path = "src/stream_server.rs"
[[bin]] # Bin to run the gRPC client
name = "stream-client"
path = "src/stream_client.rs"
[dependencies]
tokio.workspace = true
tonic = "0.9"
tonic-reflection = "0.9.2"
prost = "0.11"
tokio-stream = "0.1"
async-stream = "0.2"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
rand = "0.7"
h2 = { version = "0.3" }
anyhow = "1.0.75"
futures-util = "0.3.28"
[build-dependencies]
tonic-build = "0.9"
tonic 的示例代码还是比较齐全的,本次我们参考 tonic 的 streaming example。
首先编写 proto 文件,用来描述报文。 proto/echo.proto
syntax = "proto3";
package stream;
// EchoRequest is the request for echo.
message EchoRequest { string message = 1; }
// EchoResponse is the response for echo.
message EchoResponse { string message = 1; }
// Echo is the echo service.
service Echo {
// UnaryEcho is unary echo.
rpc UnaryEcho(EchoRequest) returns (EchoResponse) {}
// ServerStreamingEcho is server side streaming.
rpc ServerStreamingEcho(EchoRequest) returns (stream EchoResponse) {}
// ClientStreamingEcho is client side streaming.
rpc ClientStreamingEcho(stream EchoRequest) returns (EchoResponse) {}
// BidirectionalStreamingEcho is bidi streaming.
rpc BidirectionalStreamingEcho(stream EchoRequest)
returns (stream EchoResponse) {}
}
文件并不复杂,只有两个 message 一个请求一个返回,之所以选择这个示例是因为该示例包含了rpc中的流式处理,包扩了server 流、client 流以及双向流的操作。 编辑build.rs 文件
use std::{env, path::PathBuf};
fn main() -> Result<(), Box<dyn std::error::Error>> {
tonic_build::compile_protos("proto/echo.proto")?;
Ok(())
}
该文件用来通过 tonic-build 生成 grpc 的 rust 基础代码
完成上述工作后就可以构建 server 和 client 代码了
stream_server.rs
pub mod pb {
tonic::include_proto!("stream");
}
use anyhow::Result;
use futures_util::FutureExt;
use pb::{EchoRequest, EchoResponse};
use std::{
error::Error,
io::ErrorKind,
net::{SocketAddr, ToSocketAddrs},
pin::Pin,
thread,
time::Duration,
};
use tokio::{
net::TcpListener,
sync::{
mpsc,
oneshot::{self, Receiver, Sender},
Mutex,
},
task::{self, JoinHandle},
};
use tokio_stream::{
wrappers::{ReceiverStream, TcpListenerStream},
Stream, StreamExt,
};
use tonic::{transport::Server, Request, Response, Status, Streaming};
type EchoResult<T> = Result<Response<T>, Status>;
type ResponseStream = Pin<Box<dyn Stream<Item = Result<EchoResponse, Status>> + Send>>;
fn match_for_io_error(err_status: &Status) -> Option<&std::io::Error> {
let mut err: &(dyn Error + 'static) = err_status;
loop {
if let Some(io_err) = err.downcast_ref::<std::io::Error>() {
return Some(io_err);
}
// h2::Error do not expose std::io::Error with `source()`
// https://github.com/hyperium/h2/pull/462
if let Some(h2_err) = err.downcast_ref::<h2::Error>() {
if let Some(io_err) = h2_err.get_io() {
return Some(io_err);
}
}
err = match err.source() {
Some(err) => err,
None => return None,
};
}
}
#[derive(Debug)]
pub struct EchoServer {}
#[tonic::async_trait]
impl pb::echo_server::Echo for EchoServer {
async fn unary_echo(&self, req: Request<EchoRequest>) -> EchoResult<EchoResponse> {
let req_str = req.into_inner().message;
let response = EchoResponse { message: req_str };
Ok(Response::new(response))
}
type ServerStreamingEchoStream = ResponseStream;
async fn server_streaming_echo(
&self,
req: Request<EchoRequest>,
) -> EchoResult<Self::ServerStreamingEchoStream> {
println!("EchoServer::server_streaming_echo");
println!("\tclient connected from: {:?}", req.remote_addr());
// creating infinite stream with requested message
let repeat = std::iter::repeat(EchoResponse {
message: req.into_inner().message,
});
let mut stream = Box::pin(tokio_stream::iter(repeat).throttle(Duration::from_millis(200)));
let (tx, rx) = mpsc::channel(128);
tokio::spawn(async move {
while let Some(item) = stream.next().await {
match tx.send(Result::<_, Status>::Ok(item)).await {
Ok(_) => {
// item (server response) was queued to be send to client
}
Err(_item) => {
// output_stream was build from rx and both are dropped
break;
}
}
}
println!("\tclient disconnected");
});
let output_stream = ReceiverStream::new(rx);
Ok(Response::new(
Box::pin(output_stream) as Self::ServerStreamingEchoStream
))
}
async fn client_streaming_echo(
&self,
_: Request<Streaming<EchoRequest>>,
) -> EchoResult<EchoResponse> {
Err(Status::unimplemented("not implemented"))
}
type BidirectionalStreamingEchoStream = ResponseStream;
async fn bidirectional_streaming_echo(
&self,
req: Request<Streaming<EchoRequest>>,
) -> EchoResult<Self::BidirectionalStreamingEchoStream> {
println!("EchoServer::bidirectional_streaming_echo");
let mut in_stream = req.into_inner();
let (tx, rx) = mpsc::channel(128);
tokio::spawn(async move {
while let Some(result) = in_stream.next().await {
match result {
Ok(v) => tx
.send(Ok(EchoResponse { message: v.message }))
.await
.expect("working rx"),
Err(err) => {
if let Some(io_err) = match_for_io_error(&err) {
if io_err.kind() == ErrorKind::BrokenPipe {
eprintln!("\tclient disconnected: broken pipe");
break;
}
}
match tx.send(Err(err)).await {
Ok(_) => (),
Err(_err) => break, // response was droped
}
}
}
}
println!("\tstream ended");
});
// echo just write the same data that was received
let out_stream = ReceiverStream::new(rx);
Ok(Response::new(
Box::pin(out_stream) as Self::BidirectionalStreamingEchoStream
))
}
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// 基础server
let server = EchoServer {};
Server::builder()
.add_service(pb::echo_server::EchoServer::new(server))
.serve("0.0.0.0:50051".to_socket_addrs().unwrap().next().unwrap())
.await
.unwrap();
Ok(())
}
server 端的代码还是比较清晰的,首先通过 tonic::include_proto! 宏引入grpc定义,参数是 proto 文件中定义的 package 。我们重点说说 server_streaming_echo function 。这个function 的处理流程明白了,其他的流式处理大同小异。首先 通过std::iter::repeat function 定义一个迭代器;然后构建 tokio_stream 在本示例中 每 200毫秒产生一个 repeat;最后构建一个 channel ,tx 用来发送从stream中获取的内容太,rx 封装到response 中返回。 最后 main 函数 拉起服务。
client 代码如下
pub mod pb {
tonic::include_proto!("stream");
}
use std::time::Duration;
use tokio_stream::{Stream, StreamExt};
use tonic::transport::Channel;
use pb::{echo_client::EchoClient, EchoRequest};
fn echo_requests_iter() -> impl Stream<Item = EchoRequest> {
tokio_stream::iter(1..usize::MAX).map(|i| EchoRequest {
message: format!("msg {:02}", i),
})
}
async fn unary_echo(client: &mut EchoClient<Channel>, num: usize) {
for i in 0..num {
let req = tonic::Request::new(EchoRequest {
message: "msg".to_string() + &i.to_string(),
});
let resp = client.unary_echo(req).await.unwrap();
println!("resp:{}", resp.into_inner().message);
}
}
async fn streaming_echo(client: &mut EchoClient<Channel>, num: usize) {
let stream = client
.server_streaming_echo(EchoRequest {
message: "foo".into(),
})
.await
.unwrap()
.into_inner();
// stream is infinite - take just 5 elements and then disconnect
let mut stream = stream.take(num);
while let Some(item) = stream.next().await {
println!("\treceived: {}", item.unwrap().message);
}
// stream is droped here and the disconnect info is send to server
}
async fn bidirectional_streaming_echo(client: &mut EchoClient<Channel>, num: usize) {
let in_stream = echo_requests_iter().take(num);
let response = client
.bidirectional_streaming_echo(in_stream)
.await
.unwrap();
let mut resp_stream = response.into_inner();
while let Some(received) = resp_stream.next().await {
let received = received.unwrap();
println!("\treceived message: `{}`", received.message);
}
}
async fn bidirectional_streaming_echo_throttle(client: &mut EchoClient<Channel>, dur: Duration) {
let in_stream = echo_requests_iter().throttle(dur);
let response = client
.bidirectional_streaming_echo(in_stream)
.await
.unwrap();
let mut resp_stream = response.into_inner();
while let Some(received) = resp_stream.next().await {
let received = received.unwrap();
println!("\treceived message: `{}`", received.message);
}
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = EchoClient::connect("http://127.0.0.1:50051").await.unwrap();
println!("Unary echo:");
unary_echo(&mut client, 10).await;
tokio::time::sleep(Duration::from_secs(1)).await;
println!("Streaming echo:");
streaming_echo(&mut client, 5).await;
tokio::time::sleep(Duration::from_secs(1)).await; //do not mess server println functions
// Echo stream that sends 17 requests then graceful end that connection
println!("\r\nBidirectional stream echo:");
bidirectional_streaming_echo(&mut client, 17).await;
// Echo stream that sends up to `usize::MAX` requests. One request each 2s.
// Exiting client with CTRL+C demonstrate how to distinguish broken pipe from
// graceful client disconnection (above example) on the server side.
println!("\r\nBidirectional stream echo (kill client with CTLR+C):");
bidirectional_streaming_echo_throttle(&mut client, Duration::from_secs(2)).await;
Ok(())
}
测试一下,分别运行 server 和 client
cargo run --bin stream-server
cargo run --bin stream-client
在开发中,我们通常不会再 client 和 server都开发好的情况下才开始测试。通常在开发server 端的时候采用 grpcurl 工具进行测试工作
grpcurl -import-path ./proto -proto echo.proto list
grpcurl -import-path ./proto -proto echo.proto describe stream.Echo
grpcurl -plaintext -import-path ./proto -proto echo.proto -d '{"message":"1234"}' 127.0.0.1:50051 stream.Echo/UnaryEcho
此时,如果我们不指定 -import-path 参数,执行如下命令
grpcurl -plaintext 127.0.0.1:50051 list
会出现如下报错信息
Failed to list services: server does not support the reflection API
让服务端程序支持 reflection API
use std::{env, path::PathBuf};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let out_dir = PathBuf::from(env::var("OUT_DIR").unwrap());
tonic_build::configure()
.file_descriptor_set_path(out_dir.join("stream_descriptor.bin"))
.compile(&["proto/echo.proto"], &["proto"])
.unwrap();
Ok(())
}
file_descriptor_set_path 生成一个文件,其中包含为协议缓冲模块编码的 prost_types::FileDescriptorSet
文件。这是实现 gRPC 服务器反射所必需的。
接下来改造一下 stream-server.rs,涉及两处更改。
新增 STREAM_DESCRIPTOR_SET 常量
pub mod pb {
tonic::include_proto!("stream");
pub const STREAM_DESCRIPTOR_SET: &[u8] =
tonic::include_file_descriptor_set!("stream_descriptor");
}
修改main函数
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// 基础server
// let server = EchoServer {};
// Server::builder()
// .add_service(pb::echo_server::EchoServer::new(server))
// .serve("0.0.0.0:50051".to_socket_addrs().unwrap().next().unwrap())
// .await
// .unwrap();
// tonic_reflection
let service = tonic_reflection::server::Builder::configure()
.register_encoded_file_descriptor_set(pb::STREAM_DESCRIPTOR_SET)
.with_service_name("stream.Echo")
.build()
.unwrap();
let addr = "0.0.0.0:50051".parse().unwrap();
let server = EchoServer {};
Server::builder()
.add_service(service)
.add_service(pb::echo_server::EchoServer::new(server))
.serve(addr)
.await?;
Ok(())
}
register_encoded_file_descriptor_set 将包含编码的 prost_types::FileDescriptorSet
的 byte slice 注册到 gRPC Reflection 服务生成器注册。
再次测试
grpcurl -plaintext 127.0.0.1:50051 list
grpcurl -plaintext 127.0.0.1:50051 describe stream.Echo
返回正确结果。