使用python从列表中读取数据并将特定值索引到Elastics

使用python从列表中读取数据并将特定值索引到Elastics

本文介绍了如何使用python从列表中读取数据并将特定值索引到Elasticsearch中?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我使用了 paramiko从我的PC连接到开发板,并执行脚本。
然后,我将该脚本的结果保存在一个列表中(输出)。
我想提取列表的一些值并将其插入到Elasticsearch中。
我已经手动完成了列表的第一个结果。但是如何使其余的值自动化?
我需要正则表达式吗?请给我一些提示。

I have used "paramiko" to connect from my PC to a devboard, and execute a script.Then I am saving the results of this script in a list (output).I want to extract some values of the list and insert them into Elasticsearch.I have done it manually with the first result of the list. But how can I automate for the rest of the values?Do I need "regex"? Please give me some clues.

谢谢

这是连接到开发板,执行脚本并检索列表的代码的一部分=输出

THIS IS PART OF THE CODE THAT CONNECTS TO THE DEVBOARD, EXECUTES A SCRIPT AND RETRIEVES A LIST=output

def main():
    ssh = initialize_ssh()
    stdin, stdout, stderr = ssh.exec_command('cd coral/tflite/python/examples/classification/Auto_benchmark\n python3 auto_benchmark.py')
    output = stdout.readlines()
    type(output)
    #print(type(output))
    print('\n'.join(output))
    ssh.close()

列表看起来像这样:

labels: imagenet_labels.txt

Model: efficientnet-edgetpu-S_quant_edgetpu.tflite

Image: img0000.jpg


----INFERENCE TIME----

Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.

Time: 6.2ms

Results: wall clock

Score: 0.25781

#####################################

labels: imagenet_labels.txt

Model: mobilenet_v1_1.0_224_quant_edgetpu.tflite

Image: img0000.jpg


----INFERENCE TIME----

Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.

Time: 2.8ms

Results: umbrella

Score: 0.22266

#####################################
Temperature: 35C

这是将数据索引到弹性搜索中的映射

THIS IS THE MAPPING THAT IS NEEDED TO INDEX DATA INTO ELASTICSEARCH

def initialize_mapping_classification(es):
    """
    Initialise les mappings
    """
    mapping_classification = {
        'properties': {
            '@timestamp': {'type': 'date'},
            'type': 'coralito',
            'Model': {'type': 'string'},
            'Time': {'type': 'float'},
            'Results': {'type': 'string'},
            'Score': {'type': 'float'},
            'Temperature': {'type': 'float'}
        }
    }

    if not es.indices.exists(CORAL):
        es.indices.create(CORAL)
        es.indices.put_mapping(body=mapping_classification, doc_type=DOC_TYPE, index=CORAL)

这是我的尝试。我已经根据清单的第一项结果进行了手动操作。我想自动化它

THIS IS MY ATTEMPT. I HAVE DONE IT MANUALLY WITH THE FIRST RESULT OF THE LIST. I WANT TO AUTOMATE IT

if CLASSIFY == 1:

        doc = {
            '@timestamp':  str(datetime.datetime.utcnow().strftime("%Y-%m-%d"'T'"%H:%M:%S")),
            'type': 'coralito',
            'Model': "efficientnet-edgetpu-S_quant_edgetpu.tflite",
            'Time': "6.2 ms",
            'Results': "wall clock",
            'Score': "0.25781",
            'Temperature': "35 C"
        }

        response = send_data_elasticsearch(CORAL, DOC_TYPE, doc, es)

        print(doc)

------------------------------编辑2 ------ ---------------------------------

------------------------------EDIT 2---------------------------------------

这就是我的数据在使用正则表达式提取感兴趣的值后看起来像

So this is how my data looks like after using regex to extract the values of interest

这就是我的意思得到索引:

This is what I get indexed:

这是我的代码:

import elasticsearch
from elasticsearch import Elasticsearch, helpers
import datetime
import re

data = ['labels: imagenet_labels.txt \n', '\n', 'Model: efficientnet-edgetpu-S_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 23.1\n', 'Time(ms): 5.7\n', '\n', '\n', 'Inference: corkscrew, bottle screw\n', 'Score: 0.03125 \n', '\n', 'TPU_temp(°C): 57.05\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: efficientnet-edgetpu-M_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 29.3\n', 'Time(ms): 10.8\n', '\n', '\n', "Inference: dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk\n", 'Score: 0.09375 \n', '\n', 'TPU_temp(°C): 56.8\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: efficientnet-edgetpu-L_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 45.6\n', 'Time(ms): 31.0\n', '\n', '\n', 'Inference: pick, plectrum, plectron\n', 'Score: 0.09766 \n', '\n', 'TPU_temp(°C): 57.55\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: inception_v3_299_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 68.8\n', 'Time(ms): 51.3\n', '\n', '\n', 'Inference: ringlet, ringlet butterfly\n', 'Score: 0.48047 \n', '\n', 'TPU_temp(°C): 57.3\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: inception_v4_299_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 121.8\n', 'Time(ms): 101.2\n', '\n', '\n', 'Inference: admiral\n', 'Score: 0.59375 \n', '\n', 'TPU_temp(°C): 57.05\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: inception_v2_224_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 34.3\n', 'Time(ms): 16.6\n', '\n', '\n', 'Inference: lycaenid, lycaenid butterfly\n', 'Score: 0.41406 \n', '\n', 'TPU_temp(°C): 57.3\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: mobilenet_v2_1.0_224_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 14.4\n', 'Time(ms): 3.3\n', '\n', '\n', 'Inference: leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea\n', 'Score: 0.36328 \n', '\n', 'TPU_temp(°C): 57.3\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: mobilenet_v1_1.0_224_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 14.5\n', 'Time(ms): 3.0\n', '\n', '\n', 'Inference: bow tie, bow-tie, bowtie\n', 'Score: 0.33984 \n', '\n', 'TPU_temp(°C): 57.3\n', '##################################### \n', '\n', 'labels: imagenet_labels.txt \n', '\n', 'Model: inception_v1_224_quant_edgetpu.tflite \n', '\n', 'Image: insect.jpg \n', '\n', '*The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory*\n', 'Time(ms): 21.2\n', 'Time(ms): 3.6\n', '\n', '\n', 'Inference: pick, plectrum, plectron\n', 'Score: 0.17578 \n', '\n', 'TPU_temp(°C): 57.3\n', '##################################### \n', '\n']


# declare a client instance of the Python Elasticsearch library
client = Elasticsearch("http://localhost:9200")

#using regex
regex = re.compile(r'(\w+)\((.+)\):\s(.*)|(\w+:)\s(.*)')
match_regex = list(filter(regex.match, data))
match = [line.rstrip('\n') for line in match_regex]


#using "bulk"
def yield_docs():
    """
    Initialise les mappings
    """

    doc_source = {
        "data": match

        }

    # use a yield generator so that the doc data isn't loaded into memory
    yield {
        "_index": "coralito",
        "_type": "coralote",
        "_source": doc_source
        }

try:
    # make the bulk call using 'actions' and get a response
    resp = helpers.bulk(
        client,
        yield_docs()
    )
    print ("\nhelpers.bulk() RESPONSE:", resp)
    print ("RESPONSE TYPE:", type(resp))
except Exception as err:
    print("\nhelpers.bulk() ERROR:", err)

-----------------------------编辑3 -------------- -------

-----------------------------EDIT 3---------------------



推荐答案


  1. 删除换行符

  2. 用通用分隔符(- ---推理时间---- 我认为是个不错的开始)

  3. 提取密钥并添加使用例如或诸如等

  4. 解析数值(时间,得分,温度,.. 。)-稍后您会感谢我;)

  5. 扩展 Model 映射并添加-否则该点将被标记掉,您会想知道为什么您无法搜索精确匹配项还是无法对其进行汇总

  6. 准备要同步的对象

  7. 上传到ElasticSearch

  1. Remove the line breaks
  2. Split the text by a common delimiter (----INFERENCE TIME---- would be a good start I think)
  3. Extract the keys & values using for example r'(\w+:)\s(.*)' or a named lookbehind such as r'(?<=Note: ).*' etc
  4. Parse the numeric values (time, score, temperature, ...) -- you'll thank me later ;)
  5. Extend the Model mapping w/ a keyword datatype -- otherwise the dot will be tokenized away and you'll wonder why you can't search for exact matches nor aggregate on it
  6. Prepare the objects that you'll want to sync
  7. Bulk upload to ElasticSearch

这篇关于如何使用python从列表中读取数据并将特定值索引到Elasticsearch中?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-24 04:30