问题描述
我有一个托管Hive表,其中只包含一个150MB文件。然后我做从tbl中选择count(*),并使用2个映射器。我想将它设置为更大的数字。
首先,我尝试'set mapred.max.split.size = 8388608;',因此希望它会使用19个映射器。但它只使用3.不知何故,它仍然将输入分割为64MB。我也使用了'set dfs.block.size = 8388608;',不工作。
然后我尝试了一个香草map-reduce工作来做同样的事情。它最初使用了3个映射器,当我设置mapred.max.split.size时,它使用了19.所以问题在于Hive,我猜想。
我读了一些的Hive源代码,像CombineHiveInputFormat,ExecDriver等无法找到线索。
我还可以使用其他设置吗? javadba的答案与我从Hive邮件列表收到的答案相同,以下是解决方案:
set hive.input.format = org。 apache.hadoop.hive.ql.io.HiveInputFormat;
set mapred.map.tasks = 20;
从dw_stage.st_dw_marketing_touch_pi_metrics_basic中选择count(*);
来自邮件列表:
稍后我会深入研究源代码。
I have a managed Hive table, which contains only one 150MB file. I then do "select count(*) from tbl" to it, and it uses 2 mappers. I want to set it to a bigger number.
First I tried 'set mapred.max.split.size=8388608;', so hopefully it will use 19 mappers. But it only uses 3. Somehow it still split the input by 64MB. I also used 'set dfs.block.size=8388608;', not working either.
Then I tried a vanilla map-reduce job to do the same thing. It initially uses 3 mappers, and when I set mapred.max.split.size, it uses 19. So the problem lies in Hive, I suppose.
I read some of the Hive source code, like CombineHiveInputFormat, ExecDriver, etc. can't find a clue.
What else settings can I use?
I combined @javadba 's answer with that I received from Hive mailing list, here's the solution:
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set mapred.map.tasks = 20;
select count(*) from dw_stage.st_dw_marketing_touch_pi_metrics_basic;
From the mailing list:
I would dig into source code later.
这篇关于未能增加Hive Mapper任务?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!