本文介绍了在Pandas DataFrame对象中重新定义索引的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试重新索引熊猫DataFrame
对象,
I am trying to re-index a pandas DataFrame
object, like so,
From:
a b c
0 1 2 3
1 10 11 12
2 20 21 22
To :
b c
1 2 3
10 11 12
20 21 22
我正在如下所示进行操作,并且得到了错误的答案.有关如何执行此操作的任何线索?
I am going about this as shown below and am getting the wrong answer. Any clues on how to do this?
>>> col = ['a','b','c']
>>> data = DataFrame([[1,2,3],[10,11,12],[20,21,22]],columns=col)
>>> data
a b c
0 1 2 3
1 10 11 12
2 20 21 22
>>> idx2 = data.a.values
>>> idx2
array([ 1, 10, 20], dtype=int64)
>>> data2 = DataFrame(data,index=idx2,columns=col[1:])
>>> data2
b c
1 11 12
10 NaN NaN
20 NaN NaN
知道为什么会这样吗?
推荐答案
为什么不简单地使用 set_index
方法?
Why don't you simply use set_index
method?
In : col = ['a','b','c']
In : data = DataFrame([[1,2,3],[10,11,12],[20,21,22]],columns=col)
In : data
Out:
a b c
0 1 2 3
1 10 11 12
2 20 21 22
In : data2 = data.set_index('a')
In : data2
Out:
b c
a
1 2 3
10 11 12
20 21 22
这篇关于在Pandas DataFrame对象中重新定义索引的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!