问题描述
我不明白为什么有时,计划的总成本可能很小,而查看计划的内部,我们会发现巨大的成本.(确实查询很慢).
I cannot figure out why sometimes, the total cost of a plan can be a very small number whereas looking inside the plan we can find huge costs. (indeed the query is very slow).
有人能解释一下吗?
这是一个例子.显然,代价高昂的部分来自主选择中的一个字段,该字段在子视图上执行 listagg,并且与此子视图的连接条件包含复杂条件(我们可以在一个或另一个字段上连接).
Here is an example.Apparently the costful part comes from a field in the main select that does a listagg on a subview and the join condition with this subview contains a complex condition (we can join on one field or another).
| Id | Operation | Name | Rows | Bytes | Cost |
----------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 875 | 20 |
| 1 | SORT GROUP BY | | 1 | 544 | |
| 2 | VIEW | | 1 | 544 | 3 |
| 3 | SORT UNIQUE | | 1 | 481 | 3 |
| 4 | NESTED LOOPS | | | | |
| 5 | NESTED LOOPS | | 3 | 1443 | 2 |
| 6 | TABLE ACCESS BY INDEX ROWID | | 7 | 140 | 1 |
| 7 | INDEX RANGE SCAN | | 7 | | 1 |
| 8 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 9 | TABLE ACCESS BY INDEX ROWID | | 1 | 461 | 1 |
| 10 | SORT GROUP BY | | 1 | 182 | |
| 11 | NESTED LOOPS | | | | |
| 12 | NESTED LOOPS | | 8 | 1456 | 3 |
| 13 | NESTED LOOPS | | 8 | 304 | 2 |
| 14 | TABLE ACCESS BY INDEX ROWID | | 7 | 154 | 1 |
| 15 | INDEX RANGE SCAN | | 7 | | 1 |
| 16 | INDEX RANGE SCAN | | 1 | 16 | 1 |
| 17 | INDEX RANGE SCAN | | 1 | | 1 |
| 18 | TABLE ACCESS BY INDEX ROWID | | 1 | 144 | 1 |
| 19 | SORT GROUP BY | | 1 | 268 | |
| 20 | VIEW | | 1 | 268 | 9 |
| 21 | SORT UNIQUE | | 1 | 108 | 9 |
| 22 | CONCATENATION | | | | |
| 23 | NESTED LOOPS | | | | |
| 24 | NESTED LOOPS | | 1 | 108 | 4 |
| 25 | NESTED LOOPS | | 1 | 79 | 3 |
| 26 | NESTED LOOPS | | 1 | 59 | 2 |
| 27 | TABLE ACCESS BY INDEX ROWID | | 1 | 16 | 1 |
| 28 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 29 | TABLE ACCESS BY INDEX ROWID | | 1 | 43 | 1 |
| 30 | INDEX RANGE SCAN | | 1 | | 1 |
| 31 | TABLE ACCESS BY INDEX ROWID | | 1 | 20 | 1 |
| 32 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 33 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 34 | TABLE ACCESS BY INDEX ROWID | | 1 | 29 | 1 |
| 35 | NESTED LOOPS | | | | |
| 36 | NESTED LOOPS | | 1 | 108 | 4 |
| 37 | NESTED LOOPS | | 1 | 79 | 3 |
| 38 | NESTED LOOPS | | 1 | 59 | 2 |
| 39 | TABLE ACCESS BY INDEX ROWID | | 4 | 64 | 1 |
| 40 | INDEX RANGE SCAN | | 2 | | 1 |
| 41 | TABLE ACCESS BY INDEX ROWID | | 1 | 43 | 1 |
| 42 | INDEX RANGE SCAN | | 1 | | 1 |
| 43 | TABLE ACCESS BY INDEX ROWID | | 1 | 20 | 1 |
| 44 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 45 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 46 | TABLE ACCESS BY INDEX ROWID | | 1 | 29 | 1 |
| 47 | SORT GROUP BY | | 1 | 330 | |
| 48 | VIEW | | 1 | 330 | 26695 |
| 49 | SORT UNIQUE | | 1 | 130 | 26695 |
| 50 | CONCATENATION | | | | |
| 51 | HASH JOIN ANTI | | 1 | 130 | 13347 |
| 52 | NESTED LOOPS | | | | |
| 53 | NESTED LOOPS | | 1 | 110 | 4 |
| 54 | NESTED LOOPS | | 1 | 81 | 3 |
| 55 | NESTED LOOPS | | 1 | 61 | 2 |
| 56 | TABLE ACCESS BY INDEX ROWID | | 1 | 16 | 1 |
| 57 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 58 | TABLE ACCESS BY INDEX ROWID | | 1 | 45 | 1 |
| 59 | INDEX RANGE SCAN | | 1 | | 1 |
| 60 | TABLE ACCESS BY INDEX ROWID | | 1 | 20 | 1 |
| 61 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 62 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 63 | TABLE ACCESS BY INDEX ROWID | | 1 | 29 | 1 |
| 64 | VIEW | | 164K| 3220K| 13341 |
| 65 | NESTED LOOPS | | | | |
| 66 | NESTED LOOPS | | 164K| 11M| 13341 |
| 67 | NESTED LOOPS | | 164K| 8535K| 10041 |
| 68 | TABLE ACCESS BY INDEX ROWID | | 164K| 6924K| 8391 |
| 69 | INDEX SKIP SCAN | | 2131K| | 163 |
| 70 | INDEX UNIQUE SCAN | | 1 | 10 | 1 |
| 71 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 72 | TABLE ACCESS BY INDEX ROWID | | 1 | 20 | 1 |
| 73 | HASH JOIN ANTI | | 2 | 260 | 13347 |
| 74 | NESTED LOOPS | | | | |
| 75 | NESTED LOOPS | | 2 | 220 | 4 |
| 76 | NESTED LOOPS | | 2 | 162 | 3 |
| 77 | NESTED LOOPS | | 2 | 122 | 2 |
| 78 | TABLE ACCESS BY INDEX ROWID | | 4 | 64 | 1 |
| 79 | INDEX RANGE SCAN | | 2 | | 1 |
| 80 | TABLE ACCESS BY INDEX ROWID | | 1 | 45 | 1 |
| 81 | INDEX RANGE SCAN | | 1 | | 1 |
| 82 | TABLE ACCESS BY INDEX ROWID | | 1 | 20 | 1 |
| 83 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 84 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 85 | TABLE ACCESS BY INDEX ROWID | | 1 | 29 | 1 |
| 86 | VIEW | | 164K| 3220K| 13341 |
| 87 | NESTED LOOPS | | | | |
| 88 | NESTED LOOPS | | 164K| 11M| 13341 |
| 89 | NESTED LOOPS | | 164K| 8535K| 10041 |
| 90 | TABLE ACCESS BY INDEX ROWID | | 164K| 6924K| 8391 |
| 91 | INDEX SKIP SCAN | | 2131K| | 163 |
| 92 | INDEX UNIQUE SCAN | | 1 | 10 | 1 |
| 93 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 94 | TABLE ACCESS BY INDEX ROWID | | 1 | 20 | 1 |
| 95 | NESTED LOOPS OUTER | | 1 | 875 | 20 |
| 96 | NESTED LOOPS OUTER | | 1 | 846 | 19 |
| 97 | NESTED LOOPS OUTER | | 1 | 800 | 18 |
| 98 | NESTED LOOPS OUTER | | 1 | 776 | 17 |
| 99 | NESTED LOOPS OUTER | | 1 | 752 | 16 |
| 100 | NESTED LOOPS OUTER | | 1 | 641 | 15 |
| 101 | NESTED LOOPS OUTER | | 1 | 576 | 14 |
| 102 | NESTED LOOPS OUTER | | 1 | 554 | 13 |
| 103 | NESTED LOOPS OUTER | | 1 | 487 | 12 |
| 104 | NESTED LOOPS OUTER | | 1 | 434 | 11 |
| 105 | NESTED LOOPS | | 1 | 368 | 10 |
| 106 | NESTED LOOPS | | 1 | 102 | 9 |
| 107 | NESTED LOOPS OUTER | | 1 | 85 | 8 |
| 108 | NESTED LOOPS | | 1 | 68 | 7 |
| 109 | NESTED LOOPS | | 50 | 2700 | 6 |
| 110 | HASH JOIN | | 53 | 1696 | 5 |
| 111 | INLIST ITERATOR | | | | |
| 112 | TABLE ACCESS BY INDEX ROWID| | 520 | 10400 | 3 |
| 113 | INDEX RANGE SCAN | | 520 | | 1 |
| 114 | INLIST ITERATOR | | | | |
| 115 | TABLE ACCESS BY INDEX ROWID| | 91457 | 1071K| 1 |
| 116 | INDEX UNIQUE SCAN | | 2 | | 1 |
| 117 | TABLE ACCESS BY INDEX ROWID | | 1 | 22 | 1 |
| 118 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 119 | TABLE ACCESS BY INDEX ROWID | | 1 | 14 | 1 |
| 120 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 121 | TABLE ACCESS BY INDEX ROWID | | 1 | 17 | 1 |
| 122 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 123 | TABLE ACCESS BY INDEX ROWID | | 1 | 17 | 1 |
| 124 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 125 | TABLE ACCESS BY INDEX ROWID | | 1 | 266 | 1 |
| 126 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 127 | TABLE ACCESS BY INDEX ROWID | | 1 | 66 | 1 |
| 128 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 129 | TABLE ACCESS BY INDEX ROWID | | 1 | 53 | 1 |
| 130 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 131 | TABLE ACCESS BY INDEX ROWID | | 1 | 67 | 1 |
| 132 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 133 | INDEX RANGE SCAN | | 1 | 22 | 1 |
| 134 | TABLE ACCESS BY INDEX ROWID | | 1 | 65 | 1 |
| 135 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 136 | TABLE ACCESS BY INDEX ROWID | | 1 | 111 | 1 |
| 137 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 138 | TABLE ACCESS BY INDEX ROWID | | 1 | 24 | 1 |
| 139 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 140 | TABLE ACCESS BY INDEX ROWID | | 1 | 24 | 1 |
| 141 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 142 | TABLE ACCESS BY INDEX ROWID | | 1 | 46 | 1 |
| 143 | INDEX UNIQUE SCAN | | 1 | | 1 |
| 144 | TABLE ACCESS BY INDEX ROWID | | 1 | 29 | 1 |
| 145 | INDEX UNIQUE SCAN | | 1 | | 1 |
----------------------------------------------------------------------------------------------------------
推荐答案
一条语句的总成本通常等于或大于其任何子操作的成本.这条规则至少有 4 个例外.
The total cost of a statement is usually equal to or greater than the cost of any of its child operations. There are at least 4 exceptions to this rule.
您的计划看起来像 #3,但如果不查看代码,我们就无法确定.
Your plan looks like #3 but we can't be sure without looking at code.
1.过滤器
执行计划可能取决于运行时的条件.这些条件导致 FILTER
操作将动态决定要执行的查询块.下面的示例使用静态条件,但仍演示了该概念.子查询的一部分非常昂贵,但条件否定了整个事情.
Execution plans may depend on conditions at run-time. These conditions cause FILTER
operations that will dynamically decide which query block to execute. The example below uses a static condition but still demonstrates the concept. Part of the subquery is very expensive but the condition negates the whole thing.
explain plan for select * from dba_objects cross join dba_objects where 1 = 2;
select * from table(dbms_xplan.display(format => 'basic +cost'));
Plan hash value: 3258663795
--------------------------------------------------------------------
| Id | Operation | Name | Cost (%CPU)|
--------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 0 (0)|
| 1 | FILTER | | |
| 2 | MERGE JOIN CARTESIAN | | 11M (3)|
...
2.COUNT STOPKEY
执行计划总结子操作直到最终成本.但是子操作不会总是完成.在下面的示例中,说计划的一部分花费 214 可能是正确的.但是由于条件 where rownum 只能运行该子操作的一部分.
Execution plans sum child operations up until the final cost. But child operations will not always finish. In the example below it may be correct to say that part of the plan costs 214. But because of the condition where rownum <= 1
only part of that child operation may run.
explain plan for
select /*+ no_query_transformation */ *
from (select * from dba_objects join dba_objects using (owner))
where rownum <= 1;
select * from table(dbms_xplan.display(format => 'basic +cost'));
Plan hash value: 2132093199
-------------------------------------------------------------------------------
| Id | Operation | Name | Cost (%CPU)|
-------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 4 (0)|
| 1 | COUNT STOPKEY | | |
| 2 | VIEW | | 4 (0)|
| 3 | VIEW | | 4 (0)|
| 4 | NESTED LOOPS | | 4 (0)|
| 5 | VIEW | DBA_OBJECTS | 2 (0)|
| 6 | UNION-ALL | | |
| 7 | HASH JOIN | | 3 (34)|
| 8 | INDEX FULL SCAN | I_USER2 | 1 (0)|
| 9 | VIEW | _CURRENT_EDITION_OBJ | 1 (0)|
| 10 | FILTER | | |
| 11 | HASH JOIN | | 214 (3)|
...
3.SELECT 列列表中的子查询
成本聚合不包括 SELECT 列列表中的子查询.像 select ([expensive query]) from dual;
这样的查询的总成本非常小.我不明白这样做的原因;Oracle 估计子查询和 FROM 中的行数,当然可以将它们相乘以获得总成本.
Cost aggregation does not include subqueries in the SELECT column list. A query like select ([expensive query]) from dual;
will have a very small total cost. I don't understand the reason for this; Oracle estimates the subquery and he number of rows in the FROM, surely it could multiply them together for a total cost.
explain plan for
select dummy,(select count(*) from dba_objects cross join dba_objects) from dual;
select * from table(dbms_xplan.display(format => 'basic +cost'));
Plan hash value: 3705842531
---------------------------------------------------------------
| Id | Operation | Name | Cost (%CPU)|
---------------------------------------------------------------
| 0 | SELECT STATEMENT | | 2 (0)|
| 1 | SORT AGGREGATE | | |
| 2 | MERGE JOIN CARTESIAN | | 11M (3)|
...
4.其他 - 四舍五入?错误?
大约 0.01% 的计划仍然存在无法解释的成本问题.我在其中找不到任何模式.也许这只是一个舍入问题或一些罕见的优化器错误.对于像优化器一样复杂的任何模型,总会有一些奇怪的情况.
About 0.01% of plans still have unexplainable cost issues. I can't find any pattern among them. Perhaps it's just a rounding issue or some rare optimizer bugs. There will always be some weird cases with a any model as complicated as the optimizer.
检查更多异常
此查询可以找到其他异常,它返回所有第一个成本小于最大成本的计划.
This query can find other exceptions, it returns all plans where the first cost is less than the maximum cost.
select *
from
(
--First and Max cost per plan.
select
sql_id, plan_hash_value, id, cost
,max(cost) keep (dense_rank first order by id)
over (partition by sql_id, plan_hash_value) first_cost
,max(cost)
over (partition by sql_id, plan_hash_value) max_cost
,max(case when operation = 'COUNT' and options = 'STOPKEY' then 1 else 0 end)
over (partition by sql_id, plan_hash_value) has_count_stopkey
,max(case when operation = 'FILTER' and options is null then 1 else 0 end)
over (partition by sql_id, plan_hash_value) has_filter
,count(distinct(plan_hash_value))
over () total_plans
from v$sql_plan
--where sql_id = '61a161nm1ttjj'
order by 1,2,3
)
where first_cost < max_cost
--It's easy to exclude FILTER and COUNT STOPKEY.
and has_filter = 0
and has_count_stopkey = 0
order by 1,2,3;
这篇关于甲骨文“总计"计划成本真的低于它的一些元素的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!