问题描述
Input: Two n-bit integers x and y, where x ≥ 0, y ≥ 1.
Output: The quotient and remainder of x divided by y.
if x = 0, then return (q, r) := (0, 0);
q := 0; r := x;
while (r ≥ y) do
{ q := q + 1;
r := r – y};
return (q, r);
我已经获得了 O(n^2) 的大 O 复杂度,但朋友说它是 O(2^n),其中 n 是作为输入大小的位数
I have obtained the Big O complexity as O(n^2) but a friends says it is O(2^n) where n is the number of bits as the input size
请给出解释
推荐答案
while循环的迭代次数正好是floor(x/y)
.每次迭代需要 n
次操作,因为这是减法 r - y
的复杂度.
The number of iterations of the while-loop is exactly floor(x/y)
. Each iteration takes n
operations, because that is the complexity of the subtraction r - y
.
因此算法的复杂度为n * floor(x/y)
.但是,我们想将复杂性表示为 n
的函数,而不是 x
和 y
的函数.
Hence the complexity of the algorithm is n * floor(x/y)
. However, we want to express the complexity as a function of n
, not as a function of x
and y
.
因此问题变成:在最坏的情况下,floor(x/y)
与 n
有何关系?
Thus the question becomes: how does floor(x/y)
relate to n
, in the worst case?
当x
和y
是两个非负的n
时,x/y
所能得到的最大值-digits 数字,并且 y >= 1
,是通过取 x 的最大可能值和 y 的最小可能值获得的.
The biggest value that can be obtained for x/y
when x
and y
are two nonnegative n
-digits numbers, and y >= 1
, is obtained by taking the biggest possible value for x, and the smallest possible value for y.
x
的最大可能值是x = 2**n - 1
(x
的所有位在其二进制表示中都是 1);y
的最小可能值是y = 1
.
- The biggest possible value for
x
isx = 2**n - 1
(all bits ofx
are 1 in its binary representation); - The smallest possible value for
y
isy = 1
.
因此 x/y 的最大可能值是 x/y = 2**n - 1
.
Hence the biggest possible value for x/y is x/y = 2**n - 1
.
你的除法算法的时间复杂度是O(n * 2**n)
,当x = 2**n - 1
时达到这个上限code> 和 y = 1
.
The time-complexity of your division algorithm is O(n * 2**n)
, and this upper-bound is achieved when x = 2**n - 1
and y = 1
.
这篇关于这个除法算法的大 O 复杂度是多少的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!