问题描述
系统要求我根据旧数据生成一个新变量。基本上,我要问的是,我是从原始值中随机抽取值(通过使用 random
函数),并且观察值至少是旧值的10倍,然后将其保存为新变量。
I'm being asked to generate a new variable based on the data from an old one. Basically, what is being asked is that I take values at random (by using the random
function) from the original one and have at least 10x as many observations as the old one, and then save this as a new variable.
这是我的数据集:
我想使用的变量是 area
这是我的尝试,但它给我一个模块对象不可调用
错误:
This is my attempt but it is giving me a module object is not callable
error:
import pandas as pd
import random as rand
dataFrame = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/forestfires.csv")
area = dataFrame['area']
random_area = rand(area)
print(random_area)
您可以使用函数:
You can use the sample
function with replace=True
:
df = df.sample(n=len(df) * 10, replace=True)
或者,仅对区域列进行采样,请使用
Or, to sample only the area column, use
area = df.area.sample(n=len(df) * 10, replace=True)
另一个选项将涉及,看起来像这样:
Another option would involve np.random.choice
, and would look something like:
df = df.iloc[np.random.choice(len(df), len(df) * 10)]
这个想法是从0- len(df)-1
生成随机索引。第一个参数指定上限,第二个参数( len(df)* 10
)指定要生成的索引数。然后,我们使用生成的索引来索引 df
。
The idea is to generate random indices from 0-len(df)-1
. The first argument specifies the upper bound and the second (len(df) * 10
) specifies the number of indices to generate. We then use the generated indices to index into df
.
如果您只想获取区域
,就足够了。
If you just want to get the area
, this is sufficient.
area = df.iloc[np.random.choice(len(df), len(df) * 10), df.columns.get_loc('area')]
Index.get_loc
将 iloc 的位置。
df = pd.DataFrame({'A': list('aab'), 'B': list('123')})
df
A B
0 a 1
1 a 2
2 b 3
# Sample 3 times the original size
df.sample(n=len(df) * 3, replace=True)
A B
2 b 3
1 a 2
1 a 2
2 b 3
1 a 2
0 a 1
0 a 1
2 b 3
2 b 3
df.iloc[np.random.choice(len(df), len(df) * 3)]
A B
0 a 1
1 a 2
1 a 2
0 a 1
2 b 3
0 a 1
0 a 1
0 a 1
2 b 3
这篇关于对样本大小大于DataFrame长度的行进行采样的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!