本文介绍了如何从 DataFrame 中选择准确数量的随机行的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何有效地从 DataFrame 中选择确切数量的随机行?数据包含一个可以使用的索引列.如果我必须使用最大大小,索引列上的 count() 或 max() 哪个更有效?
How can I select an exact number of random rows from a DataFrame efficiently?The data contains an index column that can be used.If I have to use maximum size, what is more efficient, count() or max() on the index column?
推荐答案
一种可能的方法是使用 .count()
计算行数,然后使用 sample()
code> 来自 python
的 随机库 生成来自该范围的任意长度的随机序列.最后使用生成的数字列表 vals
对索引列进行子集.
A possible approach is to calculate the number of rows using .count()
, then use sample()
from python
's random library to generate a random sequence of arbitrary length from this range. Lastly use the resulting list of numbers vals
to subset your index column.
import random
def sampler(df, col, records):
# Calculate number of rows
colmax = df.count()
# Create random sample from range
vals = random.sample(range(1, colmax), records)
# Use 'vals' to filter DataFrame using 'isin'
return df.filter(df[col].isin(vals))
示例:
df = sc.parallelize([(1,1),(2,1),
(3,1),(4,0),
(5,0),(6,1),
(7,1),(8,0),
(9,0),(10,1)]).toDF(["a","b"])
sampler(df,"a",3).show()
+---+---+
| a| b|
+---+---+
| 3| 1|
| 4| 0|
| 6| 1|
+---+---+
这篇关于如何从 DataFrame 中选择准确数量的随机行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!