本文介绍了NumPy追加vs串联的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
NumPy append
和concatenate
有什么区别?
What is the difference between NumPy append
and concatenate
?
我的观察是,如果未指定轴,则concatenate
会快一点,而append
会使数组变平.
My observation is that concatenate
is a bit faster and append
flattens the array if axis is not specified.
In [52]: print a
[[1 2]
[3 4]
[5 6]
[5 6]
[1 2]
[3 4]
[5 6]
[5 6]
[1 2]
[3 4]
[5 6]
[5 6]
[5 6]]
In [53]: print b
[[1 2]
[3 4]
[5 6]
[5 6]
[1 2]
[3 4]
[5 6]
[5 6]
[5 6]]
In [54]: timeit -n 10000 -r 5 np.concatenate((a, b))
10000 loops, best of 5: 2.05 µs per loop
In [55]: timeit -n 10000 -r 5 np.append(a, b, axis = 0)
10000 loops, best of 5: 2.41 µs per loop
In [58]: np.concatenate((a, b))
Out[58]:
array([[1, 2],
[3, 4],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[5, 6]])
In [59]: np.append(a, b, axis = 0)
Out[59]:
array([[1, 2],
[3, 4],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[1, 2],
[3, 4],
[5, 6],
[5, 6],
[5, 6]])
In [60]: np.append(a, b)
Out[60]:
array([1, 2, 3, 4, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5,
6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 5, 6])
推荐答案
np.append
使用np.concatenate
:
def append(arr, values, axis=None):
arr = asanyarray(arr)
if axis is None:
if arr.ndim != 1:
arr = arr.ravel()
values = ravel(values)
axis = arr.ndim-1
return concatenate((arr, values), axis=axis)
这篇关于NumPy追加vs串联的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!