本文介绍了改组tfrecords文件的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有5个tfrecords文件,每个对象一个。训练时,我想从所有5个tfrecord中平均读取数据,即如果我的批量大小为50,则我应该从第一个tfrecord文件中获取10个样本,从第二个tfrecord文件中获取10个样本,依此类推。目前,它只是从所有三个文件中顺序读取,即我从同一记录中获得了50个样本。有没有办法从不同的tfrecords文件中采样?

I have 5 tfrecords files, one for each object. While training I want to read data equally from all the 5 tfrecords i.e. if my batch size is 50, I should get 10 samples from 1st tfrecord file, 10 samples from the second tfrecord file and so on. Currently, it just reads sequentially from all the three files i.e. I get 50 samples from the same record. Is there a way to sample from differnt tfrecords files?

推荐答案

我建议您阅读,由@mrry在 tf.data 。他在幻灯片42上说明了如何使用可以同时读取多个tfrecord文件。

I advise you to read the tutorial by @mrry on tf.data. On slide 42 he explains how to use tf.data.Dataset.interleave() to read multiple tfrecord files at the same time.

例如,如果您有5个文件,包含:

For instance if you have 5 files, containing:

file0.tfrecord: [0, 1]
file1.tfrecord: [2, 3]
file2.tfrecord: [4, 5]
file3.tfrecord: [6, 7]
file4.tfrecord: [8, 9]

您可以这样编写数据集:

You can write the dataset like this:

files = ["file{}.tfrecord".format(i) for i in range(5)]
files = tf.data.Dataset.from_tensor_slices(files)
dataset = files.interleave(lambda x: tf.data.TFRecordDataset(x),
                           cycle_length=5, block_length=1)

dataset = dataset.map(_parse_function)  # parse the record

interleave 的参数为:
- cyc le_length :要同时读取的文件数。如果要读取所有文件以创建批处理,请将其设置为文件数(在这种情况下,这是您应该执行的操作,因为每个文件都包含一种标签类型)
- block_length :每次我们从文件中读取时,都会从该文件中读取 block_length 个元素

The parameters of interleave are:- cycle_length: number of files to read concurrently. If you want to read from all your files to create a batch, set this to the number of files (in your case this is what you should do since each file contains one type of label)- block_length: each time we read from a file, reads block_length elements from this file

我们可以测试它是否按预期工作:

We can test that it works as expected:

iterator = dataset.make_one_shot_iterator()
x = iterator.get_next()

with tf.Session() as sess:
    for _ in range(num_samples):
        print(sess.run(x))

将打印:

0
2
4
6
8
1
3
5
7
9

这篇关于改组tfrecords文件的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-23 15:30