如何使用PIL将灰度转换为假色

如何使用PIL将灰度转换为假色

本文介绍了如何使用PIL将灰度转换为假色?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我似乎无法弄清楚如何使用灰度功能并将其更改为假彩色.我知道我需要将每种颜色(R,G,B)分成多个范围,然后根据每种颜色的范围分配颜色.有谁知道它如何工作?

  def灰度(pic):(宽度,高度)=图片尺寸对于y(范围)(高度):对于x(范围)(宽度):像素= cp.getpixel((x,y))(r,g,b)=像素平均=(r + g + b)//3newPix =(平均,平均,平均)cp.putpixel((x,y),newPix)返回cp 
解决方案

由于您从未在评论中回答我的最终后续问题,因此我做出了一些猜测,并实施了一些措施来说明仅使用此方法即可完成此操作 PIL (或

这是另一种合成,只是这次显示的是将已经是灰度的图像转换为相同的4种假色调色板.

您要这样做吗?

I can't seem to figure out how to take my grayscale function and change it to give me false color. I know I need to break each color (R,G,B) into ranges and then assign colors based on the range for each color. Does anyone have any idea how this can work?

def grayscale(pic):
    (width,height) = pic.size
    for y in range (height):
        for x in range(width):
            pix = cp.getpixel((x,y))
            (r, g, b) = pix
            avg = (r + g + b)//3
            newPix = (avg, avg, avg)
            cp.putpixel((x,y),newPix)
    return cp
解决方案

Since you never answered my final follow-on question in the comments, I've made a few guesses and implemented something to illustrate how it might be done using only the PIL (or pillow) module.

In a nutshell, the code converts the image a grayscale, divides up the resulting 0% to 100% luminosity (intensity) pixel range into equally sized sub-ranges, and then assigns a color from a palette of them to each of these.

from PIL import Image
from PIL.ImageColor import getcolor, getrgb
from PIL.ImageOps import grayscale

try:
    xrange
except NameError:  # Python 3.
    xrange = range

def falsecolor(src, colors):
    if Image.isStringType(src):  # File path?
        src = Image.open(src)
    if src.mode not in ['L', 'RGB', 'RGBA']:
        raise TypeError('Unsupported source image mode: {}'.format(src.mode))
    src.load()

    # Create look-up-tables (luts) to map luminosity ranges to components
    # of the colors given in the color palette.
    num_colors = len(colors)
    palette = [colors[int(i/256.*num_colors)] for i in xrange(256)]
    luts = (tuple(c[0] for c in palette) +
            tuple(c[1] for c in palette) +
            tuple(c[2] for c in palette))

    # Create grayscale version of image of necessary.
    l = src if Image.getmodebands(src.mode) == 1 else grayscale(src)

    # Convert grayscale to an equivalent RGB mode image.
    if Image.getmodebands(src.mode) < 4:  # Non-alpha image?
        merge_args = ('RGB', (l, l, l))  # RGB version of grayscale.

    else:  # Include copy of src image's alpha layer.
        a = Image.new('L', src.size)
        a.putdata(src.getdata(3))
        luts += tuple(xrange(256))  # Add a 1:1 mapping for alpha values.
        merge_args = ('RGBA', (l, l, l, a))  # RGBA version of grayscale.

    # Merge all the grayscale bands back together and apply the luts to it.
    return Image.merge(*merge_args).point(luts)

if __name__ == '__main__':
    R, G, B = (255,   0,   0), (  0, 255,   0), (  0,   0, 255)
    C, M, Y = (  0, 255, 255), (255,   0, 255), (255, 255,   0)
    filename = 'test_image.png'

    # Convert image into falsecolor one with 4 colors and display it.
    falsecolor(filename, [B, R, G, Y]).show()

Below is a composite showing an RGB test image, the intermediate internal 256-level grayscale image, and the final result of changing that into a false color one comprised of only four colors (each representing a range of 64 levels of intensity):

Here's another composite, only this time showing the conversion of an image that's already grayscale into the same palette of 4 false colors.

Is something like this what you're wanting to do?

这篇关于如何使用PIL将灰度转换为假色?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-23 11:18