本文介绍了在pyspark中加入具有相同名称的数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有两个从两个 csv 文件中读取的数据框.

I have two dataframe which has been readed from two csv files.

+---+----------+-----------------+
| ID|  NUMBER  |  RECHARGE_AMOUNT|
+---+----------+-----------------+
|  1|9090909092|               30|
|  2|9090909093|               30|
|  3|9090909090|               30|
|  4|9090909094|               30|
+---+----------+-----------------+

+---+----------+-----------------+
| ID|  NUMBER  |  RECHARGE_AMOUNT|
+---+----------+-----------------+
|  1|9090909092|               40|
|  2|9090909093|               50|
|  3|9090909090|               60|
|  4|9090909094|               70|
+---+----------+-----------------+

我正在尝试使用 NUMBER coumn 使用 pyspark 代码连接这两个数据 dfFinal = dfFinal.join(df2, on=['NUMBER'], how='inner') 和 new数据帧生成如下.

I am triying to join this two data from using NUMBER coumn using the pyspark code dfFinal = dfFinal.join(df2, on=['NUMBER'], how='inner') and new dataframe is generated as follows.

+----------+---+-----------------+---+-----------------+
|  NUMBER  | ID|  RECHARGE_AMOUNT| ID|  RECHARGE_AMOUNT|
+----------+---+-----------------+---+-----------------+
|9090909092|  1|               30|  1|               40|
|9090909093|  2|               30|  2|               50|
|9090909090|  3|               30|  3|               60|
|9090909094|  4|               30|  4|               70|
+----------+---+-----------------+---+-----------------+

但是我无法将此数据帧写入文件,因为加入后的数据帧具有重复的列.我正在使用以下代码.dfFinal.coalesce(1).write.format('com.databricks.spark.csv').save('/home/user/output',header = 'true') 有什么办法加入火花后避免重复列.下面给出的是我的 pyspark 代码.

But i am not able to write this dataframe into a file since the dataframe after joining is having duplicate column. I am using the following code. dfFinal.coalesce(1).write.format('com.databricks.spark.csv').save('/home/user/output',header = 'true') Is there any way to avoid duplicate column after joining in spark. Given below is my pyspark code.

from pyspark.sql import SparkSession
from pyspark.sql.functions import col
spark = SparkSession.builder.appName("test1").getOrCreate()
files = ["/home/user/test1.txt", "/home/user/test2.txt"]
dfFinal = spark.read.load(files[0],format="csv", sep=",", inferSchema="false", header="true", mode="DROPMALFORMED")
dfFinal.show()
for i in range(1,len(files)):
    df2 = spark.read.load(files[i],format="csv", sep=",", inferSchema="false", header="true", mode="DROPMALFORMED")
    df2.show()
    dfFinal = dfFinal.join(df2, on=['NUMBER'], how='inner')
dfFinal.show()
dfFinal.coalesce(1).write.format('com.databricks.spark.csv').save('/home/user/output',header = 'true')

我需要生成唯一的列名.即:如果我在文件数组中给出了两个文件相同的文件,它应该生成如下.

I need to generate unique column name.ie: if i gave two files in files array with same coumn it should generate as follows.

+----------+----+-------------------+-----+-------------------+
|  NUMBER  |IDx |  RECHARGE_AMOUNTx | IDy |  RECHARGE_AMOUNTy |
+----------+----+-------------------+-----+-------------------+
|9090909092|  1 |               30  |  1  |               40  |
|9090909093|  2 |               30  |  2  |               50  |
|9090909090|  3 |               30  |  3  |               60  |
|9090909094|  4 |               30  |  4  |               70  |
+----------+---+-----------------+---+------------------------+

在熊猫中,我可以使用 suffixes 参数,如下所示 dfFinal = dfFinal.merge(df2,left_on='NUMBER',right_on='NUMBER',how='inner',suffixes=('x', 'y'),sort=True) 这将生成上述数据帧.有什么办法可以在 pyspark 上复制这个.

In panda i can use suffixes argument as show below dfFinal = dfFinal.merge(df2,left_on='NUMBER',right_on='NUMBER',how='inner',suffixes=('x', 'y'),sort=True) which will generate the above dataframe. Is there any way i can replicate this on pyspark.

推荐答案

您可以从每个数据框中选择列并为其设置别名.
像这样.

You can select the columns from each dataframe and alias it.
Like this.

dfFinal = dfFinal.join(df2, on=['NUMBER'], how='inner') \
                 .select('NUMBER',
                         dfFinal.ID.alias('ID_1'),
                         dfFinal.RECHARGE_AMOUNT.alias('RECHARGE_AMOUNT_1'),
                         df2.ID.alias('ID_2'),
                         df2.RECHARGE_AMOUNT.alias('RECHARGE_AMOUNT_2'))

这篇关于在pyspark中加入具有相同名称的数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-23 09:52