问题描述
我想让一个函数组合起来,给定两个整数n和m,返回一个三进制整数(a,b,gcd(n,m))这样:am + bn = gcd(n,m)不应该假设整数将始终为正.
I want to make a function combine which given two integers n and m, returns a triple of integers(a, b, gcd(n, m)) such that:am + bn = gcd(n, m)Should not assume that the integers will always be positive.
gcd :: Int -> Int -> Int
gcd n m
| n == m = n
| n > m = gcd (n-m) m
| n < m = gcd n (m-n)
combine :: Int ->Int -> (Int,Int,Int)
x1=1; y1=0; x2=0; y2=1
while ( m /=0 )
( q=div n m ; r=mod n m ; n=m ; m=r
t=x2 ; x2=x1-q*x2 ; x1=t
t=y2 ; y2=y1-q*y2 ; y1=t )
combine n m = (x1,y1,gcd(n,m))
您将找到一个截屏图片链接.请点击我--->![链接] http://prikachi.com/images .php?images/238/8749238o.png 如果有人有解决方案并且知道我可以替换以创建该功能的想法,将不胜感激.测试功能:结合3 2应该给出这个结果=>(1,-1,1)
You will find a screen capture picture link. Click me---> ![link] http://prikachi.com/images.php?images/238/8749238o.png Please if someone have a solution and have idea what I could replace to create the function, would be much appreciated.Test for the function: combine 3 2 should give this result => (1,-1,1)
推荐答案
我认为您可能正在寻找这样的东西:
I think you might be looking for something like this:
combine :: Int ->Int -> (Int,Int,Int)
combine n m = (x1, y1, gcd n m) where
(x1, y1) = gcdext n m
gcdext :: Int -> Int -> (Int, Int)
gcdext n m = gcdexthelper n m 1 0 0 1 where
gcdexthelper n m x1 y1 x2 y2
| m == 0 = (x1, y1)
| otherwise = gcdexthelper m r x1p y1p x2p y2p where
q = div n m
r = mod n m
x1p = x2
y1p = y2
x2p = x1 - q * x2
y2p = y1 - q * y2
您当然可以使用while
循环来实现相同的功能,但是我相信递归在Haskell中更具可读性,因此我在这里使用了它.
You can of course implement the same with a while
loop, but I believe recursion is much more readable in Haskell, so I used it here.
顺便说一句,GCD是Haskell中的标准库函数,因此无需自己编写.
And by the way, GCD is a standard library function in Haskell, so no need to write your own.
这篇关于实现扩展的欧几里得算法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!