中的R中应用优化函数

中的R中应用优化函数

本文介绍了使用Rcpp在C ++中的R中应用优化函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试在 Rcpp 中调用 R 函数optim().我在在R ++中从C ++内调用R的优化函数中看到了一个示例,但是对于我的用例,我无法对其进行正确的修改.基本上,目标函数取决于x和y,但我想针对b对其进行优化.

I am trying to call R function optim() in Rcpp. I saw an example in Calling R's optim function from within C++ using Rcpp, but I am unable to modify it correctly for my use case. Basically, the objective function depends on the x and y but I want to optimize it with respect to b.

这是 R 代码,可以满足我的要求:

Here is the R code that does what I want:

example_r = function(b, x, y) {
  phi = rnorm(length(x))

  tar_val = (x ^ 2 + y ^ 2) * b * phi

  objftn_r = function(beta, x, y) {
    obj_val = (x ^ 2 + y ^ 2) * beta

    return(obj_val)
  }

  b1 = optim(b, function(beta) {
    sum((objftn_r(beta, x, y) - tar_val) ^ 2)
  }, method = "BFGS")$par

  result = (x ^ 2 + y ^ 2) * b1

  return(b1)
}

这是我尝试将其翻译为_RcppArmadillo:

Here's is my attempt to translate it to _RcppArmadillo:

#include <RcppArmadillo.h>
using namespace Rcpp;

// [[Rcpp::depends(RcppArmadillo)]]

arma::vec example_rcpp(arma::vec b, arma::vec x, arma::vec y){

  arma::vec tar_val = pow(x,2)%b-pow(y,2);

  return tar_val;
}

// [[Rcpp::export]]
arma::vec optim_rcpp(const arma::vec& init_val, arma::vec& x, arma::vec& y){

  Rcpp::Environment stats("package:stats");
  Rcpp::Function optim = stats["optim"];

  Rcpp::List opt_results = optim(Rcpp::_["par"]    = init_val,
                                 Rcpp::_["fn"]     = Rcpp::InternalFunction(&example_rcpp),
                                 Rcpp::_["method"] = "BFGS");

  arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);

  return out;
}

但是,此代码返回:

> optim_rcpp(1:3,2:4,3:5)
Error in optim_rcpp(1:3, 2:4, 3:5) : not compatible with requested type

我不确定这是什么错误.

I'm not sure what the error is here.

推荐答案

在开始之前,我有几点评论:

Before we begin, I have a few remarks:

  1. 请显示您的所有尝试.
  1. Please show all of your attempt.
    • In particular, make sure your example is a minimal reproducible example
  • C ++ 中使用 R 中的optim与在 C ++ 中使用基础 C ++ 代码非常不同用于nlopt中的opt().
  • Using optim from R in C++ is very different than using in C++ the underlying C++ code for opt() from nlopt.
  • 如果您连续快速地问了三个以上的问题,请阅读文档或与熟悉此内容的人面谈.

结果,我已经清理了您的问题...但是,将来可能不会发生这种情况.

I've cleaned up your question as a result... But, in the future, this likely will not happen.

数据生成过程似乎分两个步骤完成:首先在example_r函数外部,然后在函数内部.

The data generation process seems to be done in 2 steps: First, outside of the example_r function, and, then inside the function.

应对此进行简化,以使其在 optimization 函数之外进行.例如:

This should be simplified so that it is done outside of the optimization function. For example:

generate_data = function(n, x_mu = 0, y_mu = 1, beta = 1.5) {

  x = rnorm(n, x_mu)
  y = rnorm(n, y_mu)

  phi = rnorm(length(x))

  tar_val = (x ^ 2 + y ^ 2) * beta * phi

  simulated_data = list(x = x, y = y, beta = beta, tar_val = tar_val)
  return(simulated_data)
}

目标函数和 R 的optim

目标函数必须返回单个值,例如 R 中的标量.在发布的 R 代码下,实际上有两个功能被设计为按顺序充当目标功能,例如

Objective Functions and R's optim

Objective functions must return a single value, e.g. a scalar, in R. Under the posted R code, there was effectively two functions designed to act as an objective function in sequence, e.g.

objftn_r = function(beta, x, y) {
  obj_val = (x ^ 2 + y ^ 2) * beta

  return(obj_val)
}

b1 = optim(b, function(beta) {
  sum((objftn_r(beta, x, y) - tar_val) ^ 2)
}, method = "BFGS")$par

因此,该目标函数应重写为:

This objective function should therefore be re-written as:

objftn_r = function(beta_hat, x, y, tar_val) {

  # The predictions generate will be a vector
  est_val = (x ^ 2 + y ^ 2) * beta_hat

  # Here we apply sum of squares which changes it
  # from a vector into a single "objective" value
  # that optim can work with.
  obj_val = sum( ( est_val  - tar_val) ^ 2)

  return(obj_val)
}

从那里,呼叫应对齐为:

From there, the calls should align as:

sim_data = generate_data(10, 1, 2, .3)

b1 = optim(sim_data$beta, fn = objftn_r, method = "BFGS",
           x = sim_data$x, y = sim_data$y, tar_val = sim_data$tar_val)$par

RcppArmadillo目标函数

固定了 R 代码的范围和行为后,我们集中精力将其翻译为 RcppArmadillo .

RcppArmadillo Objective Functions

Having fixed the scope and behavior of the R code, let's focus on translating it into RcppArmadillo.

尤其要注意,转换后定义的异议函数将 vector 而不是 scalar 返回到optim,而 not 单个值.另外值得关注的是目标函数中缺少tar_val参数.考虑到这一点,目标函数将转换为:

In particular, notice that the objection function defined after the translation returns a vector and not a scalar into optim, which is not a single value. Also of concern is the lack of a tar_val parameter in the objective function. With this in mind, the objective function will translate to:

// changed function return type and
// the return type of first parameter
double obj_fun_rcpp(double& beta_hat,
                    arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Changed from % to * as it is only appropriate if
  // `beta_hat` is the same length as x and y.
  // This is because it performs element-wise multiplication
  // instead of a scalar multiplication on a vector
  arma::vec est_val = (pow(x, 2) - pow(y, 2)) * beta_hat;

  // Compute objective value
  double obj_val = sum( pow( est_val - tar_val, 2) );

  // Return a single value
  return obj_val;
}

现在,在设置了目标函数的情况下,让我们针对 C ++ 中optim()的 R 调用 Rcpp .在此功能中,必须明确提供功能 .因此,x,y和tar_val必须出现在optim调用中.因此,我们将得出以下结论:

Now, with the objective function set, let's address the Rcpp call into R for optim() from C++. In this function, the parameters of thefunction must be explicitly supplied. So, x, y, and tar_val must be present in the optim call. Thus, we will end up with:

// [[Rcpp::export]]
arma::vec optim_rcpp(double& init_val,
                     arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Extract R's optim function
  Rcpp::Environment stats("package:stats");
  Rcpp::Function optim = stats["optim"];

  // Call the optim function from R in C++
  Rcpp::List opt_results = optim(Rcpp::_["par"]    = init_val,
                                 // Make sure this function is not exported!
                                 Rcpp::_["fn"]     = Rcpp::InternalFunction(&obj_fun_rcpp),
                                 Rcpp::_["method"] = "BFGS",
                                 // Pass in the other parameters as everything
                                 // is scoped environmentally
                                 Rcpp::_["x"] = x,
                                 Rcpp::_["y"] = y,
                                 Rcpp::_["tar_val"] = tar_val);

  // Extract out the estimated parameter values
  arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);

  // Return estimated values
  return out;
}

在一起

完整功能代码可以用test_optim.cpp编写,并通过sourceCpp()编译为:

All together

The full functioning code can be written in test_optim.cpp and compiled via sourceCpp() as:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// changed function return type and
// the return type of first parameter
// DO NOT EXPORT THIS FUNCTION VIA RCPP ATTRIBUTES
double obj_fun_rcpp(double& beta_hat,
                    arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Changed from % to * as it is only appropriate if
  // `beta_hat` is the same length as x and y.
  // This is because it performs element-wise multiplication
  // instead of a scalar multiplication on a vector
  arma::vec est_val = (pow(x, 2) - pow(y, 2)) * beta_hat;

  // Compute objective value
  double obj_val = sum( pow( est_val - tar_val, 2) );

  // Return a single value
  return obj_val;
}


// [[Rcpp::export]]
arma::vec optim_rcpp(double& init_val,
                     arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Extract R's optim function
  Rcpp::Environment stats("package:stats");
  Rcpp::Function optim = stats["optim"];

  // Call the optim function from R in C++
  Rcpp::List opt_results = optim(Rcpp::_["par"]    = init_val,
                                 // Make sure this function is not exported!
                                 Rcpp::_["fn"]     = Rcpp::InternalFunction(&obj_fun_rcpp),
                                 Rcpp::_["method"] = "BFGS",
                                 // Pass in the other parameters as everything
                                 // is scoped environmentally
                                 Rcpp::_["x"] = x,
                                 Rcpp::_["y"] = y,
                                 Rcpp::_["tar_val"] = tar_val);

  // Extract out the estimated parameter values
  arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);

  // Return estimated values
  return out;
}

测试用例

# Setup some values
beta = 2
x = 2:4
y = 3:5

# Set a seed for reproducibility
set.seed(111)

phi = rnorm(length(x))

tar_val = (x ^ 2 + y ^ 2) * beta * phi

optim_rcpp(beta, x, y, tar_val)
#          [,1]
# [1,] 2.033273

注意:如果要避免返回大小为1 x1的矩阵,请使用double作为optim_rcpp的返回参数,并将Rcpp::as<arma::vec>切换为Rcpp::as<double>

Note: If you would like to avoid a matrix of size 1 x1 from being returned please use double as the return parameter of optim_rcpp and switch Rcpp::as<arma::vec> to Rcpp::as<double>

这篇关于使用Rcpp在C ++中的R中应用优化函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-22 21:19