问题描述
说我有N个生成器,它们生成项目gs = [..] # list of generators
的流.
Say I have N generators that produce a stream of items gs = [..] # list of generators
.
我可以轻松地将它们组合在一起,从gs
:tuple_gen = zip(*gs)
中的每个生成器中获取元组生成器.
I can easily zip
them together to get a generator of tuples from each respective generator in gs
: tuple_gen = zip(*gs)
.
这将依次在gs
中的每个g
上调用next(g)
,并将结果收集到一个元组中.但是,如果每个产品的生产成本很高,我们可能希望并行化next(g)
在多个线程上的工作.
This calls next(g)
on each g
in sequence in gs
and gathers the results in a tuple. But if each item is costly to produce we may want to parallelize the work of next(g)
on multiple threads.
我该如何实现pzip(..)
来做到这一点?
How can I implement a pzip(..)
that does this?
推荐答案
可以通过创建一个生成器来实现您要求的东西,该生成器从ThreadPool上的apply_async
调用中产生结果.
What you asked for can be achieved by creating a generator which yields the results from apply_async
-calls on a ThreadPool.
仅供参考,我通过指定chunksize
参数得到的pandas.read_csv
-迭代器对这种方法进行了基准测试.我创建了100万行大小的csv文件的八个副本,并指定了chunksize = 100_000.
FYI, I benchmarked this approach with pandas.read_csv
-iterators you get with specifying the chunksize
parameter. I created eight copies of a 1M rows sized csv-file and specified chunksize=100_000.
使用您提供的顺序方法读取了四个文件,使用下面的mt_gen
函数使用四个线程池读取了四个文件:
Four of the files were read with the sequential method you provided, four with the mt_gen
function below, using a pool of four threads:
但这并不意味着它将改善每种硬件和数据设置的结果.
Doesn't mean it will improve results for every hardware and data-setup, though.
import time
import threading
from multiprocessing.dummy import Pool # dummy uses threads
def _load_sim(x = 10e6):
for _ in range(int(x)):
x -= 1
time.sleep(1)
def gen(start, stop):
for i in range(start, stop):
_load_sim()
print(f'{threading.current_thread().name} yielding {i}')
yield i
def multi_threaded(gens):
combi_g = mt_gen(gens)
for item in combi_g:
print(item)
def mt_gen(gens):
with Pool(N_WORKERS) as pool:
while True:
async_results = [pool.apply_async(next, args=(g,)) for g in gens]
try:
results = [r.get() for r in async_results]
except StopIteration: # needed for Python 3.7+, PEP 479, bpo-32670
return
yield results
if __name__ == '__main__':
N_GENS = 10
N_WORKERS = 4
GEN_LENGTH = 3
gens = [gen(x * GEN_LENGTH, (x + 1) * GEN_LENGTH) for x in range(N_GENS)]
multi_threaded(gens)
输出:
Thread-1 yielding 0
Thread-2 yielding 3
Thread-4 yielding 6
Thread-3 yielding 9
Thread-1 yielding 12
Thread-2 yielding 15
Thread-4 yielding 18
Thread-3 yielding 21
Thread-1 yielding 24
Thread-2 yielding 27
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
Thread-3 yielding 7
Thread-1 yielding 10
Thread-2 yielding 4
Thread-4 yielding 1
Thread-3 yielding 13
Thread-1 yielding 16
Thread-4 yielding 22
Thread-2 yielding 19
Thread-3 yielding 25
Thread-1 yielding 28
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28]
Thread-1 yielding 8
Thread-4 yielding 2
Thread-3 yielding 11
Thread-2 yielding 5
Thread-1 yielding 14
Thread-4 yielding 17
Thread-3 yielding 20
Thread-2 yielding 23
Thread-1 yielding 26
Thread-4 yielding 29
[2, 5, 8, 11, 14, 17, 20, 23, 26, 29]
Process finished with exit code 0
这篇关于使用线程并行执行python zip迭代器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!