问题描述
假设我正在使用Sonar
数据,并且我想在R中进行保留验证.我使用来自caret
包的createFolds
作为folds <- createFolds(mydata$Class, k=5)
对数据进行了分区.
Let's say I'm using the Sonar
data and I'd like to make a hold-out validation in R. I partitioned the data using the createFolds
from caret
package as folds <- createFolds(mydata$Class, k=5)
.
然后我想准确地使用折叠mydata[i]
作为测试数据,并使用mydata[-i]
作为训练数据来训练一个分类器.
I would like then to use exactly the fold mydata[i]
as test data and train a classifier using mydata[-i]
as train data.
我的第一个想法是使用train
函数,但是找不到对保持验证的任何支持.我在这里想念什么吗?
My first thought was to use the train
function, but I couldn't find any support for hold-out validation. Am I missing something here?
此外,我希望能够完全使用预定义的折叠作为参数,而不是让函数对数据进行分区.有人有什么想法吗?
Also, I'd like to be able to use exactly the pre-defined folds as parameter, instead of letting the function partition the data. Does anyone have any thoughts?
预先感谢
推荐答案
我认为您可能想使用1/5的数据作为测试集,并使用其他4/5的数据进行训练?
I think that maybe you want to use 1/5th of the data as a test set and train using the other 4/5ths?
如果是这种情况,则应首先使用createDataPartition
,然后让train
进行其余操作.例如:
If that is the case, you should used createDataPartition
first and let train
do the rest. For example:
> library(caret)
> library(mlbench)
> data(Sonar)
>
> set.seed(1)
> in_train <- createDataPartition(Sonar$Class, p = 4/5, list = FALSE)
>
> training <- Sonar[ in_train,]
> testing <- Sonar[-in_train,]
>
> nrow(Sonar)
[1] 208
> nrow(training)
[1] 167
> nrow(testing)
[1] 41
>
> lda_fit <- train(Class ~ ., data = training, method = "lda")
> lda_fit
Linear Discriminant Analysis
167 samples
60 predictors
2 classes: 'M', 'R'
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 167, 167, 167, 167, 167, 167, ...
Resampling results
Accuracy Kappa Accuracy SD Kappa SD
0.71 0.416 0.0532 0.108
最大
这篇关于如何在R中实施保留验证的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!