问题描述
这是在原始问题中,我们试图加速 - 在Clang和VC ++下执行移位和旋转的一些代码。 Clang和VC ++不会优化代码,因为它将shift / rotate量视为变量(即不是 constexpr
)。
当我尝试参数化移位量和字大小时,会导致:
$ g ++ -std = c ++ 11 -march = native test.cxx -o test.exe
test.cxx:13:10:error:不允许函数模板部分专门化
uint32_t LeftRotate< uint32_t,unsigned int> uint32_t v)
^ ~~~~~~~~~~~~~~~~~~~~~~~~
test.cxx:21:10:错误:功能模板部分专业化不允许
uint64_t LeftRotate< uint64_t,unsigned int>(uint64_t v)
^ ~~~~~~~~~~~~~~~~~~~
生成了2个错误。
这里是测试程序。它比所需要的大一点,所以人们可以看到我们需要处理 uint32_t
和 uint64_t
(更不要说 uint8_t
, uint16_t
和其他类型)。
$ cat test.cxx
#include< iostream>
#include< stdint.h>
template< typename T,unsigned int R>
inline T LeftRotate(unsigned int v)
{
static const unsigned int THIS_SIZE = sizeof(T)* 8;
static const unsigned int MASK = THIS_SIZE-1;
return T((< R)|(v>( - R& MASK)))
};
template< uint32_t,unsigned int R>
uint32_t LeftRotate< uint32_t,unsigned int>(uint32_t v)
{
__asm__(roll%1,%0:+ mq(v):I char)R));
return v;
}
#if __x86_64__
模板< uint64_t,unsigned int R>
uint64_t LeftRotate< uint64_t,unsigned int>(uint64_t v)
{
__asm__(rolq%1,%0:+ mq(v):J char)R));
return v;
}
#endif
int main(int argc,char * argv [])
{
std :: cout< Rotated:<< LeftRotate< uint32_t,2>((uint32_t)argc)< std :: endl;
return 0;
}
我已经通过多次错误消息的迭代,取决于我如何尝试实现旋转。 Othr错误消息包括 没有函数模板匹配函数模板专门化...
。使用模板<>
似乎产生了最不可理解的一个。
如何参数化希望Clang和VC ++能够按照预期优化函数调用?
另一种方法是将模板常量转换为常量参数
步骤1:定义rotate_distance的概念:
template< unsigned int R> using rotate_distance = std :: integral_constant< unsigned int,R> ;;
步骤2:根据函数的重载定义rotate函数, :
模板< unsigned int R>
uint32_t LeftRotate(uint32_t v,rotate_distance< R>)
现在,可以简单地调用 LeftRotate(x,rotate_distance< y>())
,这似乎很好地表达了意图,
template< unsigned int Dist,class T>
T LeftRotate(T t)
{
return LeftRotate(t,rotate_distance< Dist>());
}
完整演示:
#include< iostream>
#include< stdint.h>
#include< utility>
template< unsigned int R> using rotate_distance = std :: integral_constant< unsigned int,R> ;;
template< typename T,unsigned int R>
inline T LeftRotate(unsigned int v,rotate_distance< R>)
{
static const unsigned int THIS_SIZE = sizeof(T)* 8;
static const unsigned int MASK = THIS_SIZE-1;
return T((< R)|(v>( - R& MASK)))
}
template< unsigned int R>
uint32_t LeftRotate(uint32_t v,rotate_distance< R>)
{
__asm__(roll%1,%0:+ mq(v):I )R));
return v;
}
#if __x86_64__
template< unsigned int R>
uint64_t LeftRotate(uint64_t v,rotate_distance< R>)
{
__asm__(rolq%1,%0:+ mq(v):J )R));
return v;
}
#endif
模板< unsigned int Dist,class T>
T LeftRotate(T t)
{
return LeftRotate(t,rotate_distance< Dist>());
}
int main(int argc,char * argv [])
{
std :: cout< Rotated:<< LeftRotate((uint32_t)argc,rotate_distance 2())< std :: endl;
std :: cout<< Rotated:<< LeftRotate((uint64_t)argc,rotate_distance 2())< std :: endl;
std :: cout<< Rotated:<< LeftRotate 2((uint64_t)argc)< std :: endl;
return 0;
}
pre-c ++ 11编译器
在c ++ 11之前,我们没有std :: integral_constant,所以我们必须创建自己的版本。
这是足够的:
template< unsigned int R> struct rotate_distance {};
完整证明 - 注意优化的效果:
This is a continuation of What is the function parameter equivalent of constexpr? In the original question, we are trying to speed-up some code that performs shifts and rotates under Clang and VC++. Clang and VC++ does not optimize the code well because it treats the shift/rotate amount as variable (i.e., not constexpr
).
When I attempt to parameterize the shift amount and the word size, it results in:
$ g++ -std=c++11 -march=native test.cxx -o test.exe
test.cxx:13:10: error: function template partial specialization is not allowed
uint32_t LeftRotate<uint32_t, unsigned int>(uint32_t v)
^ ~~~~~~~~~~~~~~~~~~~~~~~~
test.cxx:21:10: error: function template partial specialization is not allowed
uint64_t LeftRotate<uint64_t, unsigned int>(uint64_t v)
^ ~~~~~~~~~~~~~~~~~~~~~~~~
2 errors generated.
Here's the test program. Its a tad bit larger than needed so folks can see we need to handle both uint32_t
and uint64_t
(not to mention uint8_t
, uint16_t
and other types).
$ cat test.cxx
#include <iostream>
#include <stdint.h>
template<typename T, unsigned int R>
inline T LeftRotate(unsigned int v)
{
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
return T((v<<R)|(v>>(-R&MASK)));
};
template<uint32_t, unsigned int R>
uint32_t LeftRotate<uint32_t, unsigned int>(uint32_t v)
{
__asm__ ("roll %1, %0" : "+mq" (v) : "I" ((unsigned char)R));
return v;
}
#if __x86_64__
template<uint64_t, unsigned int R>
uint64_t LeftRotate<uint64_t, unsigned int>(uint64_t v)
{
__asm__ ("rolq %1, %0" : "+mq" (v) : "J" ((unsigned char)R));
return v;
}
#endif
int main(int argc, char* argv[])
{
std::cout << "Rotated: " << LeftRotate<uint32_t, 2>((uint32_t)argc) << std::endl;
return 0;
}
I've been through a number of iterations of error messages depending on how I attempt to implement the rotate. Othr error messages include no function template matches function template specialization...
. Using template <>
seems to produce the most incomprehensible one.
How do I parameterize the shift amount in hopes that Clang and VC++ will optimize the function call as expected?
Another way is to turn the templated constant into a constant argument which the compiler can optimise away.
step 1: define the concept of a rotate_distance:
template<unsigned int R> using rotate_distance = std::integral_constant<unsigned int, R>;
step 2: define the rotate functions in terms of overloads of a function which takes an argument of this type:
template<unsigned int R>
uint32_t LeftRotate(uint32_t v, rotate_distance<R>)
Now, if we wish we can simply call LeftRotate(x, rotate_distance<y>())
, which seems to express intent nicely,
or we can now redefine the 2-argument template form in terms of this form:
template<unsigned int Dist, class T>
T LeftRotate(T t)
{
return LeftRotate(t, rotate_distance<Dist>());
}
Full Demo:
#include <iostream>
#include <stdint.h>
#include <utility>
template<unsigned int R> using rotate_distance = std::integral_constant<unsigned int, R>;
template<typename T, unsigned int R>
inline T LeftRotate(unsigned int v, rotate_distance<R>)
{
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
return T((v<<R)|(v>>(-R&MASK)));
}
template<unsigned int R>
uint32_t LeftRotate(uint32_t v, rotate_distance<R>)
{
__asm__ ("roll %1, %0" : "+mq" (v) : "I" ((unsigned char)R));
return v;
}
#if __x86_64__
template<unsigned int R>
uint64_t LeftRotate(uint64_t v, rotate_distance<R>)
{
__asm__ ("rolq %1, %0" : "+mq" (v) : "J" ((unsigned char)R));
return v;
}
#endif
template<unsigned int Dist, class T>
T LeftRotate(T t)
{
return LeftRotate(t, rotate_distance<Dist>());
}
int main(int argc, char* argv[])
{
std::cout << "Rotated: " << LeftRotate((uint32_t)argc, rotate_distance<2>()) << std::endl;
std::cout << "Rotated: " << LeftRotate((uint64_t)argc, rotate_distance<2>()) << std::endl;
std::cout << "Rotated: " << LeftRotate<2>((uint64_t)argc) << std::endl;
return 0;
}
pre-c++11 compilers
Prior to c++11 we didn't have std::integral_constant, so we have to make our own version.
For our purposes, this is sufficient:
template<unsigned int R> struct rotate_distance {};
full proof - note the effect of optimisations:
这篇关于参数化和“不允许功能模板部分专门化”的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!