本文介绍了numpy:要加入结构化数组吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我在类似这样的列表中有很多 numpy结构化数组这个例子:
I have many numpy structured arrays in a list like this example:
import numpy
a1 = numpy.array([(1, 2), (3, 4), (5, 6)], dtype=[('x', int), ('y', int)])
a2 = numpy.array([(7,10), (8,11), (9,12)], dtype=[('z', int), ('w', float)])
arrays = [a1, a2]
所需的输出
将它们连接在一起以创建一个统一的结构化数组的正确方法是什么?
Desired Output
What is the correct way to join them all together to create a unified structured array like the following?
desired_result = numpy.array([(1, 2, 7, 10), (3, 4, 8, 11), (5, 6, 9, 12)],
dtype=[('x', int), ('y', int), ('z', int), ('w', float)])
当前方法
这是我目前正在使用的方法,但是它很慢,因此我怀疑必须有一种更有效的方法.
Current Approach
This is what I'm currently using, but it is very slow, so I suspect there must be a more efficent way.
from numpy.lib.recfunctions import append_fields
def join_struct_arrays(arrays):
for array in arrays:
try:
result = append_fields(result, array.dtype.names, [array[name] for name in array.dtype.names], usemask=False)
except NameError:
result = array
return result
推荐答案
这是一个应该更快的实现.它将所有内容转换为numpy.uint8
的数组,并且不使用任何临时对象.
Here is an implementation that should be faster. It converts everything to arrays of numpy.uint8
and does not use any temporaries.
def join_struct_arrays(arrays):
sizes = numpy.array([a.itemsize for a in arrays])
offsets = numpy.r_[0, sizes.cumsum()]
n = len(arrays[0])
joint = numpy.empty((n, offsets[-1]), dtype=numpy.uint8)
for a, size, offset in zip(arrays, sizes, offsets):
joint[:,offset:offset+size] = a.view(numpy.uint8).reshape(n,size)
dtype = sum((a.dtype.descr for a in arrays), [])
return joint.ravel().view(dtype)
编辑:简化了代码,避免了不必要的as_strided()
.
Edit: Simplified the code and avoided the unnecessary as_strided()
.
这篇关于numpy:要加入结构化数组吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!