问题描述
致歉的标题致歉.我不确定如何更好地描述我要完成的工作.我本质上是在尝试做相反的事情获得64位乘法的上半部分在C中针对其中的平台
Apologies for the confusing title. I'm not sure how to better describe what I'm trying to accomplish. I'm essentially trying to do the reverse ofgetting the high half of a 64-bit multiplication in C for platforms where
int64_t divHi64(int64_t dividend, int64_t divisor) {
return ((__int128)dividend << 64) / (__int128)divisor;
}
由于缺乏对__int128
的支持而无法使用.
isn't possible due to lacking support for __int128
.
推荐答案
无需多字分割即可完成
假设我们想做⌊2× ⁄ ⌋,那么我们可以像这样变换表达式
Suppose we want to do ⌊2 × ⁄⌋ then we can transform the expression like this
根据这个问题,第一个术语用((-y)/y + 1)*x
来简单表示如何在C中计算2⁶⁴/n?
The first term is trivially done as ((-y)/y + 1)*x
as per this question How to compute 2⁶⁴/n in C?
第二项等效于(2 %y)/y * x,有点棘手.我尝试了各种方法,但是如果仅使用整数运算,则都需要128位乘法和128/64除法.可以使用算法在以下问题中计算MulDiv64(a, b, c) = a*b/c
来完成
The second term is equivalent to (2 % y)/y*x and is a little bit trickier. I've tried various ways but all need 128-bit multiplication and 128/64 division if using only integer operations. That can be done using the algorithms to calculate MulDiv64(a, b, c) = a*b/c
in the below questions
- 在64位中进行乘法和除法运算的最准确方法是什么?
- 如何在C ++中将64位整数乘以分数,同时最大程度地减少错误?
- (a * b)/c MulDiv并处理来自中间乘法的溢出
- 如何准确地对64位整数进行乘除运算?
- Most accurate way to do a combined multiply-and-divide operation in 64-bit?
- How to multiply a 64 bit integer by a fraction in C++ while minimizing error?
- (a * b) / c MulDiv and dealing with overflow from intermediate multiplication
- How can I multiply and divide 64-bit ints accurately?
但是它们可能很慢,如果您具有这些功能,则可以像MulDiv64(x, UINT64_MAX, y) + x/y + something
这样更轻松地计算整个表达式,而不会弄乱上面的转换
However they may be slow, and if you have those functions you calculate the whole expression more easily like MulDiv64(x, UINT64_MAX, y) + x/y + something
without messing up with the above transformation
使用long double
似乎是最简单的方法,如果它具有64位或更高的精度.所以现在可以通过(2 %y)/(long double)y * x
Using long double
seems to be the easiest way if it has 64 bits of precision or more. So now it can be done by (2 % y)/(long double)y*x
uint64_t divHi64(uint64_t x, uint64_t y) {
uint64_t mod_y = UINT64_MAX % y + 1;
uint64_t result = ((-y)/y + 1)*x;
if (mod_y != y)
result += (uint64_t)((mod_y/(long double)y)*x);
return result;
}
为简化起见,省略了溢出检查.如果您需要签名分割,则需要稍作修改
The overflow check was omitted for simplification. A slight modification will be needed if you need signed division
如果您定位的是 64位Windows ,但您使用的MSVC没有__int128
,则,而无需使用128位整数类型就可以大大简化作业.尽管您仍然需要处理溢出,因为 div
指令会在这种情况下引发异常
If you're targeting 64-bit Windows but you're using MSVC which doesn't have __int128
then now it has a 64-bit divide intrinsic which simplifies the job significantly without a 128-bit integer type. You still need to handle overflow though because the div
instruction will throw an exception on that case
uint64_t divHi64(uint64_t x, uint64_t y) {
uint64_t high, remainder;
uint64_t low = _umul128(UINT64_MAX, y, &high);
if (x <= high /* && 0 <= low */)
return _udiv128(x, 0, y, &remainder);
// overflow case
errno = EOVERFLOW;
return 0;
}
上面的溢出检查可以简化为检查x< y,因为如果x> = y则结果将溢出
The overflow checking above is can be simplified to checking whether x < y, because if x >= y then the result will overflow
另请参见
- Efficient Multiply/Divide of two 128-bit Integers on x86 (no 64-bit)
- Efficient computation of 2**64 / divisor via fast floating-point reciprocal
对16/16位除法的详尽测试表明,我的解决方案在所有情况下均能正常工作.但是,即使float
的精度超过16位,您仍然需要double
,否则偶尔会返回少于一的结果.可以通过在截断之前添加 epsilon 值来修复该问题:(uint64_t)((mod_y/(long double)y)*x + epsilon)
.这意味着您需要__float128
(或 -m128bit-long-double
选项如果您不使用 epsilon 更正结果,则在gcc中使用acc)进行精确的64/64位输出.但是该类型在32位目标上可用,与仅在64位目标上受支持,因此生活会更轻松一些.当然,如果只需要非常接近的结果,则可以按原样使用该功能
Exhaustive tests on 16/16 bit division shows that my solution works correctly for all cases. However you do need double
even though float
has more than 16 bits of precision, otherwise occasionally a less-than-one result will be returned. It may be fixed by adding an epsilon value before truncating: (uint64_t)((mod_y/(long double)y)*x + epsilon)
. That means you'll need __float128
(or the -m128bit-long-double
option) in gcc for precise 64/64-bit output if you don't correct the result with epsilon. However that type is available on 32-bit targets, unlike __int128
which is supported only on 64-bit targets, so life will be a bit easier. Of course you can use the function as-is if just a very close result is needed
下面是我用于验证的代码
Below is the code I've used for verifying
#include <thread>
#include <iostream>
#include <limits>
#include <climits>
#include <mutex>
std::mutex print_mutex;
#define MAX_THREAD 8
#define NUM_BITS 27
#define CHUNK_SIZE (1ULL << NUM_BITS)
// typedef uint32_t T;
// typedef uint64_t T2;
// typedef double D;
typedef uint64_t T;
typedef unsigned __int128 T2; // the type twice as wide as T
typedef long double D;
// typedef __float128 D;
const D epsilon = 1e-14;
T divHi(T x, T y) {
T mod_y = std::numeric_limits<T>::max() % y + 1;
T result = ((-y)/y + 1)*x;
if (mod_y != y)
result += (T)((mod_y/(D)y)*x + epsilon);
return result;
}
void testdiv(T midpoint)
{
T begin = midpoint - CHUNK_SIZE/2;
T end = midpoint + CHUNK_SIZE/2;
for (T i = begin; i != end; i++)
{
T x = i & ((1 << NUM_BITS/2) - 1);
T y = CHUNK_SIZE/2 - (i >> NUM_BITS/2);
// if (y == 0)
// continue;
auto q1 = divHi(x, y);
T2 q2 = ((T2)x << sizeof(T)*CHAR_BIT)/y;
if (q2 != (T)q2)
{
// std::lock_guard<std::mutex> guard(print_mutex);
// std::cout << "Overflowed: " << x << '&' << y << '\n';
continue;
}
else if (q1 != q2)
{
std::lock_guard<std::mutex> guard(print_mutex);
std::cout << x << '/' << y << ": " << q1 << " != " << (T)q2 << '\n';
}
}
std::lock_guard<std::mutex> guard(print_mutex);
std::cout << "Done testing [" << begin << ", " << end << "]\n";
}
uint16_t divHi16(uint32_t x, uint32_t y) {
uint32_t mod_y = std::numeric_limits<uint16_t>::max() % y + 1;
int result = ((((1U << 16) - y)/y) + 1)*x;
if (mod_y != y)
result += (mod_y/(double)y)*x;
return result;
}
void testdiv16(uint32_t begin, uint32_t end)
{
for (uint32_t i = begin; i != end; i++)
{
uint32_t y = i & 0xFFFF;
if (y == 0)
continue;
uint32_t x = i & 0xFFFF0000;
uint32_t q2 = x/y;
if (q2 > 0xFFFF) // overflowed
continue;
uint16_t q1 = divHi16(x >> 16, y);
if (q1 != q2)
{
std::lock_guard<std::mutex> guard(print_mutex);
std::cout << x << '/' << y << ": " << q1 << " != " << q2 << '\n';
}
}
}
int main()
{
std::thread t[MAX_THREAD];
for (int i = 0; i < MAX_THREAD; i++)
t[i] = std::thread(testdiv, std::numeric_limits<T>::max()/MAX_THREAD*i);
for (int i = 0; i < MAX_THREAD; i++)
t[i].join();
std::thread t2[MAX_THREAD];
constexpr uint32_t length = std::numeric_limits<uint32_t>::max()/MAX_THREAD;
uint32_t begin, end = length;
for (int i = 0; i < MAX_THREAD - 1; i++)
{
begin = end;
end += length;
t2[i] = std::thread(testdiv16, begin, end);
}
t2[MAX_THREAD - 1] = std::thread(testdiv, end, UINT32_MAX);
for (int i = 0; i < MAX_THREAD; i++)
t2[i].join();
std::cout << "Done\n";
}
这篇关于将64位整数相除,就好像被除数向左移64位,而没有128位类型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!