本文介绍了在Python中优化微分方程中的常数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
好吧,我将如何使用curve_fit来编写代码以优化微分方程中的常数a和b,例如dy/dt = a * y ^ 2 + b?我将使用odeint求解ODE,然后使用curve_fit优化a和b.如果您能提供有关这种情况的意见,我将不胜感激!
Okay so how would i approach to writing a code to optimize the constants a and b in a differential equation, like dy/dt = a*y^2 + b, using curve_fit? I would be using odeint to solve the ODE and then curve_fit to optimize a and b.If you could please provide input on this situation i would greatly appreciate it!
推荐答案
您绝对可以做到:
import numpy as np
from scipy.integrate import odeint
from scipy.optimize import curve_fit
def f(y, t, a, b):
return a*y**2 + b
def y(t, a, b, y0):
"""
Solution to the ODE y'(t) = f(t,y,a,b) with initial condition y(0) = y0
"""
y = odeint(f, y0, t, args=(a, b))
return y.ravel()
# Some random data to fit
data_t = np.sort(np.random.rand(200) * 10)
data_y = data_t**2 + np.random.rand(200)*10
popt, cov = curve_fit(y, data_t, data_y, [-1.2, 0.1, 0])
a_opt, b_opt, y0_opt = popt
print("a = %g" % a_opt)
print("b = %g" % b_opt)
print("y0 = %g" % y0_opt)
import matplotlib.pyplot as plt
t = np.linspace(0, 10, 2000)
plt.plot(data_t, data_y, '.',
t, y(t, a_opt, b_opt, y0_opt), '-')
plt.gcf().set_size_inches(6, 4)
plt.savefig('out.png', dpi=96)
plt.show()
这篇关于在Python中优化微分方程中的常数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!