本文介绍了打印完整numpy的数组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
当我打印numpy的数组,我得到一个重新被截断presentation,但我想的全阵列。
有没有办法做到这一点?
例子:
>>> numpy.arange(10000)
阵列([0,1,2,...,9997,9998,9999])
>>> numpy.arange(10000).reshape(250,40)
阵列([0,1,2,...,37,38,39],
[40,41,42,...,77,78,79],
[80,81,82,...,117,118,119]
...
[9880,9881,9882,...,9917,9918,9919]
[9920,9921,9922,...,9957,9958,9959]
[9960,9961,9962,...,9997,9998,9999])
解决方案
要澄清里德的回答
进口numpy的
numpy.set_printoptions(阈值= numpy.nan)
请注意,由于上面给出的应答可与从numpy的进口*,这是不可取的初始。
这也为我的作品
numpy.set_printoptions(阈值='男')
有关完整文档,请参阅.
When I print a numpy array, I get a truncated representation, but I want the full array.
Is there any way to do this?
Examples:
>>> numpy.arange(10000)
array([ 0, 1, 2, ..., 9997, 9998, 9999])
>>> numpy.arange(10000).reshape(250,40)
array([[ 0, 1, 2, ..., 37, 38, 39],
[ 40, 41, 42, ..., 77, 78, 79],
[ 80, 81, 82, ..., 117, 118, 119],
...,
[9880, 9881, 9882, ..., 9917, 9918, 9919],
[9920, 9921, 9922, ..., 9957, 9958, 9959],
[9960, 9961, 9962, ..., 9997, 9998, 9999]])
解决方案
To clarify on Reed's reply
import numpy
numpy.set_printoptions(threshold=numpy.nan)
Note that the reply as given above works with an initial 'from numpy import *', which is not advisable.This also works for me
numpy.set_printoptions(threshold='nan')
For full documentation, see http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html.
这篇关于打印完整numpy的数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!