本文介绍了as_strided:使用as_strided strides参数链接stepsize(conv2d的步幅)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我发现,要使用步幅1从(X,Y)生成大小为(x,y)(X - x + 1, Y - y + 1)色块,图像需要我们将步幅参数指定为img.strides * 2img.strides + img.strides. 我不知道他们是否知道该如何快速计算出来. conv2d中的步幅

I found that for generating (X - x + 1, Y - y + 1) patches of size (x,y) from (X,Y) with stride 1, image requires us to give strides parameter as img.strides * 2 or img.strides + img.strides. I don't know how they quickly compute this knowing the no. of strides in conv2d

但是我应该怎么做才能从stride步幅的相同大小的图像中获得相同大小的((X-x)/stride)+1, ((Y-y)/stride)+1补丁?

But what should I do to get ((X-x)/stride)+1, ((Y-y)/stride)+1 patches of same size from same sized image with stride stride?

由此SO 答案 稍作修改,将通道和图像数量放在前面

def patchify(img, patch_shape):
    a,b,X, Y = img.shape                # a images and b channels
    x, y = patch_shape
    shape = (a, b, X - x + 1, Y - y + 1, x, y)
    a_str, b_str, X_str, Y_str = img.strides
    strides = (a_str, b_str, X_str, Y_str, X_str, Y_str)
    return np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)

我可以看到它创建了一个滑动窗口,其大小为(x,y),跨度为1(向右移动1个像素,向下移动1个像素).我很难将as_strided使用的strides参数与我们通常用于conv2d的strides相关联.

I can see that it creates a sliding window with size (x,y) and stride 1 (move 1 pixel to the right and move 1 pixel down). I have trouble correlating the strides parameter which as_strided uses and the strides we usually use for conv2d.

如何向上述计算as_strided步幅参数的函数添加参数?

How do I add a parameter to the above function that computes as_strided strides parameter?

def patchify(img, patch_shape, stride):    # stride=stepsize in conv2d eg: 1,2,3,...
    a,b,X,Y = img.shape                    # a images and b channels
    x, y = patch_shape
    shape = (a,b,((X-x)/stride)+1, ((Y-y)/stride)+1, x, y)
    strides = ???                          # strides for as_strided
    return np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)

img是4d (a, b, X, Y)

  • a =图片数量
  • b =通道数
  • (X,Y) =宽度和高度
  • a=no.of images,
  • b=no.of channels,
  • (X,Y) = width and height

注意:的意思是stepsize.不幸的是,这也被称为跨步.

注释2 :由于stepsize通常在两个轴上都是相同的,因此在我提供的代码中,我仅提供了一个参数,但是在两个维度上都使用了它.

Note 2: Since stepsize will usually be the same on both axes, in the code I provided, I've provided only one parameter, however used it for both dimensions.

游乐场:strides 此处的内容.我已在stepsize=1 此处上运行.我注意到,该链接可能无法正常工作,但是在粘贴到新的游乐场时,它会起作用a>.

Playground:What goes in for strides here. I have it running for stepsize=1 here. I noticed that it might not work from the link but it works when pasted in new playground.

这应该可以清楚地说明我的需求:

This should give a clear idea of what I need:

[[ 0.5488135   0.71518937  0.60276338  0.54488318]
 [ 0.4236548   0.64589411  0.43758721  0.891773  ]
 [ 0.96366276  0.38344152  0.79172504  0.52889492]
 [ 0.56804456  0.92559664  0.07103606  0.0871293 ]]

# patch_size = 2x2
# stride = 1,1

[[[[ 0.5488135   0.71518937]
   [ 0.4236548   0.64589411]]

  [[ 0.71518937  0.60276338]
   [ 0.64589411  0.43758721]]

  [[ 0.60276338  0.54488318]
   [ 0.43758721  0.891773  ]]]


 [[[ 0.4236548   0.64589411]
   [ 0.96366276  0.38344152]]

  [[ 0.64589411  0.43758721]
   [ 0.38344152  0.79172504]]

  [[ 0.43758721  0.891773  ]
   [ 0.79172504  0.52889492]]]


 [[[ 0.96366276  0.38344152]
   [ 0.56804456  0.92559664]]

  [[ 0.38344152  0.79172504]
   [ 0.92559664  0.07103606]]

  [[ 0.79172504  0.52889492]
   [ 0.07103606  0.0871293 ]]]]

# stride = 2,2

[[[[[[ 0.5488135   0.71518937]
     [ 0.4236548   0.64589411]]

    [[ 0.60276338  0.54488318]
     [ 0.43758721  0.891773  ]]]


   [[[ 0.96366276  0.38344152]
     [ 0.56804456  0.92559664]]

    [[ 0.79172504  0.52889492]
     [ 0.07103606  0.0871293 ]]]]]]

# stride = 2,1

[[[[ 0.5488135   0.71518937]
   [ 0.4236548   0.64589411]]

  [[ 0.71518937  0.60276338]
   [ 0.64589411  0.43758721]]

  [[ 0.60276338  0.54488318]
   [ 0.43758721  0.891773  ]]]

 [[[ 0.96366276  0.38344152]
   [ 0.56804456  0.92559664]]

  [[ 0.38344152  0.79172504]
   [ 0.92559664  0.07103606]]

  [[ 0.79172504  0.52889492]
   [ 0.07103606  0.0871293 ]]]]

推荐答案

这是一种方法-

def patchify(img, patch_shape, stepsize_x=1, stepsize_y=1): 
    strided = np.lib.stride_tricks.as_strided
    x, y = patch_shape    
    p,q = img.shape[-2:]    
    sp,sq = img.strides[-2:]

    out_shp = img.shape[:-2] + (p-x+1,q-y+1,x,y)
    out_stride = img.strides[:-2] + (sp,sq,sp,sq)

    imgs = strided(img, shape=out_shp, strides=out_stride)
    return imgs[...,::stepsize_x,::stepsize_y,:,:]

样品运行-

1]输入:

In [156]: np.random.seed(0)

In [157]: img = np.random.randint(11,99,(2,4,4))

In [158]: img
Out[158]: 
array([[[55, 58, 75, 78],
        [78, 20, 94, 32],
        [47, 98, 81, 23],
        [69, 76, 50, 98]],

       [[57, 92, 48, 36],
        [88, 83, 20, 31],
        [91, 80, 90, 58],
        [75, 93, 60, 40]]])

2]输出-案例1:

In [159]: patchify(img, (2,2), stepsize_x=1, stepsize_y=1)[0]
Out[159]: 
array([[[[55, 58],
         [78, 20]],

        [[58, 75],
         [20, 94]],

        [[75, 78],
         [94, 32]]],


       [[[78, 20],
         [47, 98]],

        [[20, 94],
         [98, 81]],

        [[94, 32],
         [81, 23]]],


       [[[47, 98],
         [69, 76]],

        [[98, 81],
         [76, 50]],

        [[81, 23],
         [50, 98]]]])

3]输出-情况2:

In [160]: patchify(img, (2,2), stepsize_x=2, stepsize_y=1)[0]
Out[160]: 
array([[[[55, 58],
         [78, 20]],

        [[58, 75],
         [20, 94]],

        [[75, 78],
         [94, 32]]],


       [[[47, 98],
         [69, 76]],

        [[98, 81],
         [76, 50]],

        [[81, 23],
         [50, 98]]]])

4]输出-情况3:

In [161]: patchify(img, (2,2), stepsize_x=2, stepsize_y=2)[0]
Out[161]: 
array([[[[55, 58],
         [78, 20]],

        [[75, 78],
         [94, 32]]],


       [[[47, 98],
         [69, 76]],

        [[81, 23],
         [50, 98]]]])

这篇关于as_strided:使用as_strided strides参数链接stepsize(conv2d的步幅)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-18 04:42