问题描述
这个问题听起来很基础.但是当我尝试在 numpy 数组上使用 where
或 boolean
条件时,它总是返回一个扁平的数组.
The question sounds very basic. But when I try to use where
or boolean
conditions on numpy arrays, it always returns a flattened array.
我有 NumPy 数组
I have the NumPy array
P = array([[ 0.49530662, 0.07901 , -0.19012371],
[ 0.1421513 , 0.48607405, -0.20315014],
[ 0.76467375, 0.16479826, -0.56598029],
[ 0.53530718, -0.21166188, -0.08773241]])
我想提取只有负值的数组,但是当我尝试时
I want to extract the array of only negative values, but when I try
P[P<0]
array([-0.19012371, -0.41421612, -0.20315014, -0.56598029, -0.21166188,
-0.08773241, -0.09241335])
P[np.where(P<0)]
array([-0.19012371, -0.41421612, -0.20315014, -0.56598029, -0.21166188,
-0.08773241, -0.09241335])
我得到一个扁平的数组.如何提取表单的数组
I get a flattened array. How can I extract the array of the form
array([[ 0, 0, -0.19012371],
[ 0 , 0, -0.20315014],
[ 0, 0, -0.56598029],
[ 0, -0.21166188, -0.08773241]])
我不想创建一个临时数组,然后使用类似 Temp[Temp>=0] = 0
I do not wish to create a temp array and then use something like Temp[Temp>=0] = 0
推荐答案
既然您的需求是:
我想提取"只有负值的数组
您可以使用 numpy.where()
使用您的 condition(检查负值),它可以保留数组的维度,如下例所示:
You can use numpy.where()
with your condition (checking for negative values), which can preserve the dimension of the array, as in the below example:
In [61]: np.where(P<0, P, 0)
Out[61]:
array([[ 0. , 0. , -0.19012371],
[ 0. , 0. , -0.20315014],
[ 0. , 0. , -0.56598029],
[ 0. , -0.21166188, -0.08773241]])
其中 P
是您的输入数组.
where P
is your input array.
另一个想法可能是使用 numpy.zeros_like()
用于初始化相同的形状数组和 numpy.where()
收集满足我们条件的索引.
Another idea could be to use numpy.zeros_like()
for initializing a same shape array and numpy.where()
to gather the indices at which our condition satisfies.
# initialize our result array with zeros
In [106]: non_positives = np.zeros_like(P)
# gather the indices where our condition is obeyed
In [107]: idxs = np.where(P < 0)
# copy the negative values to correct indices
In [108]: non_positives[idxs] = P[idxs]
In [109]: non_positives
Out[109]:
array([[ 0. , 0. , -0.19012371],
[ 0. , 0. , -0.20315014],
[ 0. , 0. , -0.56598029],
[ 0. , -0.21166188, -0.08773241]])
另一个想法是简单地使用准系统numpy.clip()
API,如果我们省略 out=
kwarg,它将返回一个新数组.
Yet another idea would be to simply use the barebones numpy.clip()
API, which would return a new array, if we omit the out=
kwarg.
In [22]: np.clip(P, -np.inf, 0) # P.clip(-np.inf, 0)
Out[22]:
array([[ 0. , 0. , -0.19012371],
[ 0. , 0. , -0.20315014],
[ 0. , 0. , -0.56598029],
[ 0. , -0.21166188, -0.08773241]])
这篇关于如何提取与满足条件的原始数组相同维度的数组?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!